Abstract

We present evidence of complete, three-dimensional photonic bandgaps in obliquely deposited thin films with a porous microstructure of tetragonally arranged square spirals. We further present a capability to engineer the bandgap center to wavelengths as low as 1.65 µm, with bandgap widths of up to 10.9%. Using new deposition methods that provide detailed control over the photonic crystal dimensions and morphology, this approach allows advanced photonic crystal architectures to be realized over large scales with uncomplicated fabrication technology.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, �??Strong localization of photonic in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. C. C. Cheng, V. Arbet-Engels, A. Scherer, and E. Yablonovitch, �??Nanofabricated three dimensional photonic crystal operating at optical wavelengths,�?? Phys. Scripta T68, 17-20 (1996).
    [CrossRef]
  4. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 251-253 (1998).
    [CrossRef]
  5. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. E. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, Nature 405, 437-440 (2000).
    [CrossRef] [PubMed]
  6. S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, �??Guided modes in photonic crystal slabs,�?? Phys. Rev. B 60, 5751-5758 (1999).
    [CrossRef]
  7. O. Toader and S. John, �??Proposed square spiral microfabrication architecture for large three-dimensional photonic bandgap crystals,�?? Science 292, 1133-1135 (2001).
    [CrossRef] [PubMed]
  8. O. Toader and S. John, �??Square spiral photonic bandgap crystals: Robust architecture for microfabrication of materials with large three-dimensional photonic band gaps,�?? Phys. Rev. E 66, 016610 (2002).
    [CrossRef]
  9. K. Robbie, M. J. Brett, and A. Lakhtakia, �??Chiral sculptured thin films,�?? Nature 384, 616 (1996).
    [CrossRef]
  10. K. Robbie and M. J. Brett, �??Sculptured thin films and glancing angle deposition: Growth mechanics and applications,�?? J. Vac. Sci. Technol. A 15, 1460-1465 (1997).
    [CrossRef]
  11. S. R. Kennedy, M. J. Brett, O. Toader, and S. John, �??Fabrication of tetragonal square spiral photonic crystals,�?? Nano Lett. 2, 59-62 (2002).
    [CrossRef]
  12. S. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, �??Optical properties of a three-dimensional silicon square spiral photonic crystal,�?? Photonics and Nanostructures 1, 37-42 (2003).
    [CrossRef]
  13. L. L. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, �??Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,�?? Adv. Mat. 17, 541-545 (2005).
    [CrossRef]
  14. K. J. Robbie and M. J. Brett, �??Method of depositing shadow sculpted thin films,�?? U. S. Patent 5,866,204, 2 February 1999.
  15. D. Vick, L. J. Friedrich, S. K. Dew, M. J. Brett, K. Robbie, M. Seto, and T. Smy, �??Self-shadowing and surface diffusion effects in obliquely deposited thin films,�?? Thin Solid Films 339, 88-94 (1999).
    [CrossRef]
  16. M. O. Jensen and M. J. Brett, �??Periodically structured glancing angle deposition thin films,�?? IEEE Trans. Nanotechnol. 4, 269-277 (2005).
    [CrossRef]
  17. M. O. Jensen and M. J. Brett, �??Porosity engineering in glancing angle deposition thin films,�?? Appl. Phys. A 80, 763-768 (2005).
    [CrossRef]
  18. A. Chutinan, S. John, and O. Toader, �??Diffractionless flow of light in all-optical microchip,�?? Phys. Rev. Lett. 90, 123901, 2004.
    [CrossRef]
  19. M. O. Jensen and M. J. Brett, �??Functional pattern engineering in glancing angle deposition thin films,�?? J. Nanosci. Nanotechnol. (to be published).
    [PubMed]
  20. K. Robbie, J. C. Sit, and M. J. Brett, �??Advanced techniques for glancing angle deposition,�?? J. Vac. Sci. Technol. B 16, 1115-1122 (1998).

Adv. Mat.

L. L. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, �??Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,�?? Adv. Mat. 17, 541-545 (2005).
[CrossRef]

Appl. Phys. A

M. O. Jensen and M. J. Brett, �??Porosity engineering in glancing angle deposition thin films,�?? Appl. Phys. A 80, 763-768 (2005).
[CrossRef]

IEEE Trans. Nanotechnol.

M. O. Jensen and M. J. Brett, �??Periodically structured glancing angle deposition thin films,�?? IEEE Trans. Nanotechnol. 4, 269-277 (2005).
[CrossRef]

J. Nanosci. Nanotechnol.

M. O. Jensen and M. J. Brett, �??Functional pattern engineering in glancing angle deposition thin films,�?? J. Nanosci. Nanotechnol. (to be published).
[PubMed]

J. Vac. Sci. Technol. A

K. Robbie and M. J. Brett, �??Sculptured thin films and glancing angle deposition: Growth mechanics and applications,�?? J. Vac. Sci. Technol. A 15, 1460-1465 (1997).
[CrossRef]

J. Vac. Sci. Technol. B

K. Robbie, J. C. Sit, and M. J. Brett, �??Advanced techniques for glancing angle deposition,�?? J. Vac. Sci. Technol. B 16, 1115-1122 (1998).

Nano Lett.

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, �??Fabrication of tetragonal square spiral photonic crystals,�?? Nano Lett. 2, 59-62 (2002).
[CrossRef]

Nature

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 251-253 (1998).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. E. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

K. Robbie, M. J. Brett, and A. Lakhtakia, �??Chiral sculptured thin films,�?? Nature 384, 616 (1996).
[CrossRef]

Photonics and Nanostructures

S. Kennedy, M. J. Brett, H. Miguez, O. Toader, and S. John, �??Optical properties of a three-dimensional silicon square spiral photonic crystal,�?? Photonics and Nanostructures 1, 37-42 (2003).
[CrossRef]

Phys. Rev. B

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, �??Guided modes in photonic crystal slabs,�?? Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

Phys. Rev. E

O. Toader and S. John, �??Square spiral photonic bandgap crystals: Robust architecture for microfabrication of materials with large three-dimensional photonic band gaps,�?? Phys. Rev. E 66, 016610 (2002).
[CrossRef]

Phys. Rev. Lett.

E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, �??Strong localization of photonic in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

A. Chutinan, S. John, and O. Toader, �??Diffractionless flow of light in all-optical microchip,�?? Phys. Rev. Lett. 90, 123901, 2004.
[CrossRef]

Phys. Scripta

C. C. Cheng, V. Arbet-Engels, A. Scherer, and E. Yablonovitch, �??Nanofabricated three dimensional photonic crystal operating at optical wavelengths,�?? Phys. Scripta T68, 17-20 (1996).
[CrossRef]

Science

O. Toader and S. John, �??Proposed square spiral microfabrication architecture for large three-dimensional photonic bandgap crystals,�?? Science 292, 1133-1135 (2001).
[CrossRef] [PubMed]

Thin Solid Films

D. Vick, L. J. Friedrich, S. K. Dew, M. J. Brett, K. Robbie, M. Seto, and T. Smy, �??Self-shadowing and surface diffusion effects in obliquely deposited thin films,�?? Thin Solid Films 339, 88-94 (1999).
[CrossRef]

Other

K. J. Robbie and M. J. Brett, �??Method of depositing shadow sculpted thin films,�?? U. S. Patent 5,866,204, 2 February 1999.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Scanning electron micrographs of silicon square spiral thin films deposited using the GLAD technique. The tetragonal arrangement required for the square spiral PBC architecture is achieved by preparing the substrates with a periodic topography of small seeds prior to deposition.

Fig. 2.
Fig. 2.

Transmittance spectrum of the periodic square spiral GLAD film previously shown in Fig. 1(a). The low-transmittance band from 1.4 µm to 2.1 µm overlaps with the high-reflectance bands shown in Fig. 3, and is indicative of the presence of a photonic bandgap.

Fig. 3.
Fig. 3.

Reflectance spectra for the same square spiral GLAD PBC as examined in Fig. 2, for various external light incidence angles. The photonic bandgap position remains constant, indicating that the bandgap is complete with respect to crystal direction.

Fig. 4.
Fig. 4.

Reflectance spectra for a square spiral GLAD PBC for different linear polarizations of the impinging light (s, p, and intermediate polarizations). The measurements were performed at an external light incidence angle of 30°. The photonic bandgap remains in place for all polarizations, indicating that it is a complete bandgap.

Metrics