Abstract

We report the demonstration of a terahertz quantum-cascade laser that operates up to 164 K in pulsed mode and 117 K in continuous-wave mode at approximately 3.0 THz. The active region was based on a resonant-phonon depopulation scheme and a metal-metal waveguide was used for modal confinement. Copper to copper thermocompression wafer bonding was used to fabricate the waveguide, which displayed improved thermal properties compared to a previous indium-gold bonding method.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, �??Terahertz semiconductor-heterostructure laser,�?? Nature 417, 156 (2002).
    [CrossRef] [PubMed]
  2. M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, �??Low-threshold terahertz quantum-cascade lasers,�?? Appl. Phys. Lett. 81, 1381 (2002).
    [CrossRef]
  3. B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, �??3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,�?? Appl. Phys. Lett. 82, 1015 (2003).
    [CrossRef]
  4. J. Darmo, V. Tamosiunas, G. Fasching, J. Kröll, K. Unterrainer, M. Beck, M. Giovannini, J. Faist, C. Kremser, and P. Debbage, �??Imaging with a Terahertz quantum cascade laser,�?? Opt. Express 12, 1879 (2004). URL <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1879.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1879.</a>
    [CrossRef] [PubMed]
  5. D. C. Larrabee, G. A. Khodaparast, F. K. Tittel, J. Kuno, G. Scalari, L. Ajili, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, Y. Nakajima, M. Nakai, S. Sasa, M. Inoue, S. Chung, and M. B. Santos, �??Application of terahertz quantum-cascade lasers to semiconductor cyclotron resonance,�?? Opt. Lett. 29, 122 (2004).
    [CrossRef] [PubMed]
  6. J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. L. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, �??A terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,�?? submitted to Appl. Phys. Lett. (2005).
  7. M. A. Stroscio, M. Kisin, G. Belenky, and S. Luryi, �??Phonon enhanced inverse population in asymmetric double quantum wells,�?? Appl. Phys. Lett. 75, 3258 (1999).
    [CrossRef]
  8. B. S.Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, �??Terahertz quantum-cascade laser at λ �?? 100 μm using metal waveguide for mode confinement,�?? Appl. Phys. Lett. 83, 2124 (2003).
    [CrossRef]
  9. S. Kumar, B. S. Williams, S. Kohen, Q. Hu, and J. L. Reno, �??Continuous-wave operation of terahertz quantum-cascade lasers above liquid-nitrogen temperature,�?? Appl. Phys. Lett. 84, 2494 (2004).
    [CrossRef]
  10. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, �??Terahertz quantum-cascade laser operating up to 137 K,�?? Appl. Phys. Lett. 83, 5142 (2003).
    [CrossRef]
  11. V. B. Gorfinkel, S. Luryi, and B. Gelmont, �??Theory of gain spectra for quantum cascade lasers and temperature dependence of their characteristics at low and moderate carrier concentrations,�?? IEEE J. Quantum Electron. 32, 1995 (1996).
    [CrossRef]
  12. M. S. Vitiello, G. Scamarcio, V. Spagnolo, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, �??Measurement of subband electronic temperatures and population inversion in THz quantum-cascade lasers,�?? Appl. Phys. Lett. 86, 111115 (2005).
    [CrossRef]
  13. H. C. Liu, M.Wächter, D. Ban, Z. R.Wasilewski, M. Buchanan, G. C. Aers, J. C. Cao, S. L. Feng, B. S.Williams, and Q. Hu, �??Effect of doping concentration on the performance of terahertz quantum-cascade lasers,�?? submitted to Appl. Phys. Lett. (2005).
  14. L. Ajili, G. Scalari, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, �??High power quantum cascade lasers operating at λ �?� 87 and 130 μm,�?? Appl. Phys. Lett. 85, 3986 (2004).
    [CrossRef]
  15. K. N. Chen, A. Fan, C. S. Tan, R. Reif, and C. Y. Yen, �??Microstructure evolution and abnormal grain growth during copper wafer bonding,�?? Appl. Phys. Lett. 81, 3774 (2002).
    [CrossRef]
  16. C.-Y. Chen, L. Chang, E. Y. Chang, S.-H. Chen, and D.-F. Chang, �??Thermal stability of Cu/Ta/GaAs multilayers,�?? Appl. Phys. Lett. 77, 3367 (2000).
    [CrossRef]
  17. S. Kohen, B. S.Williams, and Q. Hu, �??Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,�?? J. Appl. Phys. 97, 053106 (2005).
    [CrossRef]
  18. C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, �??Resonant tunneling in quantum cascade lasers,�?? IEEE J. Quantum Electron. 34, 1722 (1998).
    [CrossRef]
  19. M. Chand and H. Maris. Personal communication.
  20. J. S. Blakemore, �??Semiconducting and other major properties of gallium arsenide,�?? J. Appl. Phys. 53, R123 (1982).
    [CrossRef]

Appl. Phys. Lett. (12)

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, �??Low-threshold terahertz quantum-cascade lasers,�?? Appl. Phys. Lett. 81, 1381 (2002).
[CrossRef]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, �??3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,�?? Appl. Phys. Lett. 82, 1015 (2003).
[CrossRef]

J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. L. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, �??A terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer,�?? submitted to Appl. Phys. Lett. (2005).

M. A. Stroscio, M. Kisin, G. Belenky, and S. Luryi, �??Phonon enhanced inverse population in asymmetric double quantum wells,�?? Appl. Phys. Lett. 75, 3258 (1999).
[CrossRef]

B. S.Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, �??Terahertz quantum-cascade laser at λ �?? 100 μm using metal waveguide for mode confinement,�?? Appl. Phys. Lett. 83, 2124 (2003).
[CrossRef]

S. Kumar, B. S. Williams, S. Kohen, Q. Hu, and J. L. Reno, �??Continuous-wave operation of terahertz quantum-cascade lasers above liquid-nitrogen temperature,�?? Appl. Phys. Lett. 84, 2494 (2004).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, �??Terahertz quantum-cascade laser operating up to 137 K,�?? Appl. Phys. Lett. 83, 5142 (2003).
[CrossRef]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, �??Measurement of subband electronic temperatures and population inversion in THz quantum-cascade lasers,�?? Appl. Phys. Lett. 86, 111115 (2005).
[CrossRef]

H. C. Liu, M.Wächter, D. Ban, Z. R.Wasilewski, M. Buchanan, G. C. Aers, J. C. Cao, S. L. Feng, B. S.Williams, and Q. Hu, �??Effect of doping concentration on the performance of terahertz quantum-cascade lasers,�?? submitted to Appl. Phys. Lett. (2005).

L. Ajili, G. Scalari, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, �??High power quantum cascade lasers operating at λ �?� 87 and 130 μm,�?? Appl. Phys. Lett. 85, 3986 (2004).
[CrossRef]

K. N. Chen, A. Fan, C. S. Tan, R. Reif, and C. Y. Yen, �??Microstructure evolution and abnormal grain growth during copper wafer bonding,�?? Appl. Phys. Lett. 81, 3774 (2002).
[CrossRef]

C.-Y. Chen, L. Chang, E. Y. Chang, S.-H. Chen, and D.-F. Chang, �??Thermal stability of Cu/Ta/GaAs multilayers,�?? Appl. Phys. Lett. 77, 3367 (2000).
[CrossRef]

IEEE J. Quantum Electron. (2)

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, �??Resonant tunneling in quantum cascade lasers,�?? IEEE J. Quantum Electron. 34, 1722 (1998).
[CrossRef]

V. B. Gorfinkel, S. Luryi, and B. Gelmont, �??Theory of gain spectra for quantum cascade lasers and temperature dependence of their characteristics at low and moderate carrier concentrations,�?? IEEE J. Quantum Electron. 32, 1995 (1996).
[CrossRef]

J. Appl. Phys. (2)

J. S. Blakemore, �??Semiconducting and other major properties of gallium arsenide,�?? J. Appl. Phys. 53, R123 (1982).
[CrossRef]

S. Kohen, B. S.Williams, and Q. Hu, �??Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,�?? J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, �??Terahertz semiconductor-heterostructure laser,�?? Nature 417, 156 (2002).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Other (1)

M. Chand and H. Maris. Personal communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Calculated conduction band schematic, with the four-well module outlined in a dotted box. Beginning with the left injection barrier, the layer thicknesses in Å are 49/79/25/66/41/156/33/90, and the 156 Å well is doped at 1.9×1016 cm-3, which yields a sheet density of 3.0×1010 cm-2 per module. (b) Scanning electron micrograph of the cleaved facet of a 23-µm-wide ridge waveguide. (c) Modal intensity for fundamental mode calculated with finite-element solver.

Fig. 2.
Fig. 2.

Optical power versus current measured from a 48-µm-wide, 0.99-mm-long ridge using 200-ns pulses repeated at 10 kHz. The lower inset shows an expanded version of the high temperature L-I curves. The upper inset displays the threshold current density versus temperature.

Fig. 3.
Fig. 3.

Continuous-wave characteristics for a 23-µm-wide, 1.22-mm-long ridge at various heat sink temperatures, where the optical power is measured from a single facet. The lower panel displays the V-I and dV/dI-I characteristics at several temperatures. The upper inset shows typical spectra at several temperatures, and the lower inset displays the relative size of the threshold discontinuity in the differential resistance versus temperature.

Fig. 4.
Fig. 4.

(a) Two-dimensional heat flow model calculated with a nonlinear finite-element solver. The 800-µm-wide, 170-µm-thick n + GaAs substrate extends beyond the margins of the figure. The lower boundary is set to 117 K, and the active region is uniformly driven by a power source of 1.1×107 W/cm3, which corresponds lasing conditions at T sink=117 K cw operation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d L d I = 1 2 ħ ω e N mod α m α w + α m η i ,

Metrics