Abstract

We observed a propagating femtosecond light pulse train generated by an integrated array illuminator as a spatially and temporally continuous motion picture. To observe the light pulse train propagating in air, light-in-flight holography is applied. The integrated array illuminator is an optical device for generating an ultrashort light pulse train from a single ultrashort pulse. The experimentally obtained pulse width and pulse interval were 130 fs and 19.7 ps, respectively. A back-propagating femtosecond light pulse train, which is the -2 order diffracted light pulse from the array illuminator and which is difficult to observe using conventional methods, was observed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. Hosoda, S. Aoshima, M. Fujimoto, and Y. Tsuchiya, �??Femtosecond snapshot imaging of propagating light itself,�?? Appl. Opt. 41, 2308 (2002).
    [CrossRef] [PubMed]
  2. M. Fujimoto, S. Aoshima, M. Hosoda, and Y. Tsuchiya, �??Femtosecond time-resolved optical polarigraphy: imaging of the propagation dynamics of intense light in a medium,�?? Opt. Lett. 24, 850 (1999).
    [CrossRef]
  3. M. Fujimoto, S. Aoshima, M. Hosoda and Y. Tsuchiya, �??Analysis of instantaneous profiles of intense femtosecond optical pulses propagating in helium gas measured by using femtosecond time-resolved optical polarigraphy,�?? Phys. Rev. A 64, 033813 (2001).
    [CrossRef]
  4. M. Fujimoto, S. Aoshima, and Y. Tsuchiya, �??Multiframe observation of an intense femtosecond optical pulse propagating in air,�?? Opt. Lett. 27, 309 (2002).
    [CrossRef]
  5. H. Kumagai, S. H. Cho, K. Ishikawa, K. Midorikawa, M. Fujimoto, S. Aoshima, and Y. Tsuchiya, �??Observation of the complex propagation of a femtosecond laser pulse in a dispersive transparent bulk material,�?? J. Opt. Soc. Am. B 20, 597 (2003).
    [CrossRef]
  6. M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, �??Tracking femtosecond laser pulses in space and time,�?? Science 294, 1080 (2001).
    [CrossRef] [PubMed]
  7. H. Gersen, J. P. Korterik, N. F. van Hulst, and L. Kuipers, �??Tracking ultrashort pulses through dispersive media: Experiment and theory,�?? Phys. Rev. E 68, 026604 (2003).
    [CrossRef]
  8. H. Gersen, D. J. W. Klunder, J. P. Korterik, A. Driessen, N. F. van Hulst, and L. Kuipers, �??Propagation of a femtosecond pulse in a microresonator visualized in time,�?? Opt. Lett. 29, 1291 (2004).
    [CrossRef] [PubMed]
  9. D. I. Staselko, Y. N. Denisyuk, and A. G. Smirnow, �??Holographic registration of a picture of temporal coherence of a wave train of a pulse radiation source,�?? Opt. Spectrosc. 26, 413 (1969).
  10. N. Abramson, �??Light-in-flight recording by holography,�?? Opt. Lett. 3, 121 (1978).
    [CrossRef] [PubMed]
  11. N. H. Abramson, �??Light-in-flight recording: high-speed holographic motion pictures of ultrafast phenomena,�?? Appl. Opt. 22, 215-232 (1983).
    [CrossRef] [PubMed]
  12. T. Kubota and M. Takeda, �??Array illuminator using grating couplers,�?? Opt. Lett. 14, 651 (1989).
    [CrossRef] [PubMed]
  13. M. Takeda and T. Kubota, �??Integrated optic array illuminator: a design for efficient and uniform power distribution,�?? Appl. Opt. 30, 1090 (1991).
    [CrossRef] [PubMed]
  14. T. Nakaya, Y. Katoh, T. Kubota, and M. Takeda, �??Diffraction efficiency of a grating coupler for an array illuminator,�?? Appl. Opt. 35, 3891-3898 (1996).
    [CrossRef] [PubMed]
  15. T. Kubota, N. Umehara, K. Iida, T. Shimura, and K. Kuroda, �??Generation of an ultrahigh-repetition-rate pulse by an array illuminator,�?? Opt. Lett. 21, 1667-1669 (1996).
    [CrossRef] [PubMed]
  16. A. Chutinan and S. Noda, �??Highly confined waveguides and waveguide bands in three-dimensional photonic crystal,�?? Appl. Phys. Lett. 75, 3739 (1999).
    [CrossRef]
  17. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, �??A three-dimensional optical photonic crystal with designed point defects,�?? Nature 429, 538 (2004).
    [CrossRef] [PubMed]
  18. A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, T. Niemi, and H. M. H. Chong, �??Comprehensive FDTD modeling of photonic crystal waveguide components,�?? Opt. Express 12, 234 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-234.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-234</a>
    [CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

A. Chutinan and S. Noda, �??Highly confined waveguides and waveguide bands in three-dimensional photonic crystal,�?? Appl. Phys. Lett. 75, 3739 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Nature

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, �??A three-dimensional optical photonic crystal with designed point defects,�?? Nature 429, 538 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Spectrosc.

D. I. Staselko, Y. N. Denisyuk, and A. G. Smirnow, �??Holographic registration of a picture of temporal coherence of a wave train of a pulse radiation source,�?? Opt. Spectrosc. 26, 413 (1969).

Phys. Rev. A

M. Fujimoto, S. Aoshima, M. Hosoda and Y. Tsuchiya, �??Analysis of instantaneous profiles of intense femtosecond optical pulses propagating in helium gas measured by using femtosecond time-resolved optical polarigraphy,�?? Phys. Rev. A 64, 033813 (2001).
[CrossRef]

Phys. Rev. E

H. Gersen, J. P. Korterik, N. F. van Hulst, and L. Kuipers, �??Tracking ultrashort pulses through dispersive media: Experiment and theory,�?? Phys. Rev. E 68, 026604 (2003).
[CrossRef]

Science

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, �??Tracking femtosecond laser pulses in space and time,�?? Science 294, 1080 (2001).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: MOV (1361 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Integrated array illuminator using a grating coupler.

Fig. 2.
Fig. 2.

Basic setup of the light-in-flight holography: BS, beam splitter; OB1, OB2, microscope objectives; L1, L2, lenses.

Fig. 3.
Fig. 3.

Optical setup for recording the light pulse train generated by the integrated array illuminator: BS, beam splitter; OB, microscope objective; L, lens.

Fig. 4.
Fig. 4.

Schematic diagram of the reconstructed hologram image of the femtosecond light pulse train.

Fig. 5.
Fig. 5.

Sequential photographs extracted from the spatially and temporally continuous motion picture of the propagating femtosecond light pulse train. The size of the scale bar is 5 cm. The wide white lines indicate the path of the CW beam from the Ti:Sapphire laser. The light pulses are shown by bright bands on the path of CW beam.

Fig. 6.
Fig. 6.

Motion picture of the propagating femtosecond light pulse train generated by the integrated array illuminator. (Multimedia file, 1.39 MB.) The femtosecond light pulse train is moving on the white lines representing the CW beams. The duration of the entire motion picture corresponds to 160 ps. A back-propagating femtosecond light pulse train is observed on the path of the input beam of the array illuminator.

Metrics