Abstract

The main goal of the present paper is to provide a comprehensive analysis of the intrinsic coupling loss for multi–step index (MSI) fibres and compare it with those obtained for step– and graded–index fibres. We investigate the effects of tolerances to each waveguide parameter typical in standard manufacturing processes by carrying out several simulations using the ray–tracing method. The results obtained will serve us to identify the most critical waveguide variations to which fibre manufactures will have to pay closer attention to achieve lower coupling losses.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Ishigure, M. Sato, A. Kondo, and Y. Koike, �??High�??Bandwidth Graded�??Index Polymer Optical Fiber with High Temperature Stability,�?? J. Lightwave Technol. 20, 1443�??1448 (2002).
    [CrossRef]
  2. I. T. Monroy, H. P. A. van de Boom, A. M. J. Koonen, G. D. Khoe, Y.Watanabe, Y. Koike, and T. Ishigure, �??Data transmission over polymer optical fibers,�?? Optical Fiber Technology 9, 159�??171 (2003).
    [CrossRef]
  3. K. Irie, Y. Uozu, and T. Yoshimura, �??Structure design and analysis of broadband POF,�?? in Proceedings of the Tenth International Conference on Plastic Optical Fibers and Applications�??POF�??01, pp. 73�??79 (Amsterdam (The Netherlands), 2001).
  4. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).
  5. F. L. Thiel and D. H. Davis, �??Contributions of optical�??waveguide manufacturing variations to joint loss,�?? Electronic Letters 12, 340�??341 (1976).
    [CrossRef]
  6. F. L. Thiel and R. M. Hawk, �??Optical waveguide cable connection,�?? Appl. Opt. 15, 2785�??2791 (1976).
    [CrossRef] [PubMed]
  7. G. Aldabaldetreku, G. Durana, J. Arrue, M. L´opez-Amo, and J. Zubia, �??Measurement of Intrinsic Coupling Loss in Multi�??Step Index Optical Fibres,�?? in 13th International Plastic Optical Fibres Conference 2004: Proceedings, pp. 450�??457 (Nuremberg (Germany), 2004).
  8. J. Zubia and J. Arrue, �??Plastic Optical Fibers: An Introduction to their Technological Processes and Applications,�?? Optical Fiber Technology 7, 101�??140 (2001).
    [CrossRef]
  9. S. C. Mettler, �??A General Characterization of Splice Loss for Multimode Optical Fibers,�?? Bell Syst. Tech. J. 58, 2163�??2182 (1979).
  10. C. M. Miller and S. C. Mettler, �??A Loss Model for Parabolic�??Profile Fiber Splices,�?? Bell Syst. Tech. J. 57, 3167�??3180 (1978).
  11. D. J. Bond and P. Hensel, �??The effects on joint losses of tolerances in some geometrical parameters of optical fibres,�?? Optical and Quantum Electronics 13, 11�??18 (1981).
    [CrossRef]
  12. Mitsubishi Rayon Co., Ltd.: �??Eska�??Miu,�?? URL <a href="http://www.pofeska.com.">http://www.pofeska.com.</a>
  13. V. Levin, T. Baskakova, Z. Lavrova, A. Zubkov, H. Poisel, and K. Klein, �??Production of multilayer polymer optical fibers,�?? in Proceedings of the Eighth International Conference on Plastic Optical Fibers and Applications�?? POF�??99, pp. 98�??101 (Chiba (Japan), 1999).
  14. D. Marcuse, Principles of Optical Fiber Measurements, chap. 4 (Academic Press, Inc., London, 1981).
  15. Japanese Standards Association, �??Test methods for structural parameters of all plastic multimode optical fibers,�?? Tech. Rep. JIS C 6862, JIS, Tokyo, Japan (1990).
  16. J. Zubia, G. Aldabaldetreku, G. Durana, J. Arrue, H. Poisel, and C. A. Bunge, �??Geometric Optics Analysis of Multi�??Step Index Optical Fibers,�?? Fiber and Integrated Optics 23, 121�??156 (2004).
    [CrossRef]

Appl. Opt.

Bell Syst. Tech.

S. C. Mettler, �??A General Characterization of Splice Loss for Multimode Optical Fibers,�?? Bell Syst. Tech. J. 58, 2163�??2182 (1979).

Bell Syst. Tech. J.

C. M. Miller and S. C. Mettler, �??A Loss Model for Parabolic�??Profile Fiber Splices,�?? Bell Syst. Tech. J. 57, 3167�??3180 (1978).

Electronic Letters

F. L. Thiel and D. H. Davis, �??Contributions of optical�??waveguide manufacturing variations to joint loss,�?? Electronic Letters 12, 340�??341 (1976).
[CrossRef]

Fiber and Integrated Optics

J. Zubia, G. Aldabaldetreku, G. Durana, J. Arrue, H. Poisel, and C. A. Bunge, �??Geometric Optics Analysis of Multi�??Step Index Optical Fibers,�?? Fiber and Integrated Optics 23, 121�??156 (2004).
[CrossRef]

International Plastic Optical Fibres

G. Aldabaldetreku, G. Durana, J. Arrue, M. L´opez-Amo, and J. Zubia, �??Measurement of Intrinsic Coupling Loss in Multi�??Step Index Optical Fibres,�?? in 13th International Plastic Optical Fibres Conference 2004: Proceedings, pp. 450�??457 (Nuremberg (Germany), 2004).

J. Lightwave Technol.

Optical and Quantum Electronics

D. J. Bond and P. Hensel, �??The effects on joint losses of tolerances in some geometrical parameters of optical fibres,�?? Optical and Quantum Electronics 13, 11�??18 (1981).
[CrossRef]

Optical Fiber Technology

I. T. Monroy, H. P. A. van de Boom, A. M. J. Koonen, G. D. Khoe, Y.Watanabe, Y. Koike, and T. Ishigure, �??Data transmission over polymer optical fibers,�?? Optical Fiber Technology 9, 159�??171 (2003).
[CrossRef]

J. Zubia and J. Arrue, �??Plastic Optical Fibers: An Introduction to their Technological Processes and Applications,�?? Optical Fiber Technology 7, 101�??140 (2001).
[CrossRef]

POF???99

V. Levin, T. Baskakova, Z. Lavrova, A. Zubkov, H. Poisel, and K. Klein, �??Production of multilayer polymer optical fibers,�?? in Proceedings of the Eighth International Conference on Plastic Optical Fibers and Applications�?? POF�??99, pp. 98�??101 (Chiba (Japan), 1999).

Proc. POF 2001

K. Irie, Y. Uozu, and T. Yoshimura, �??Structure design and analysis of broadband POF,�?? in Proceedings of the Tenth International Conference on Plastic Optical Fibers and Applications�??POF�??01, pp. 73�??79 (Amsterdam (The Netherlands), 2001).

Other

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

Mitsubishi Rayon Co., Ltd.: �??Eska�??Miu,�?? URL <a href="http://www.pofeska.com.">http://www.pofeska.com.</a>

D. Marcuse, Principles of Optical Fiber Measurements, chap. 4 (Academic Press, Inc., London, 1981).

Japanese Standards Association, �??Test methods for structural parameters of all plastic multimode optical fibers,�?? Tech. Rep. JIS C 6862, JIS, Tokyo, Japan (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Simulation results for the intrinsic coupling loss for tolerances of ±5% and a maximum circular eccentricity of 0.5 by using the ray-tracing method. Results obtained for the SI fibre (only the most significant combinations). All the parameters have been normalized.

Fig. 2.
Fig. 2.

Simulation results for the intrinsic coupling loss for tolerances of ±5% and a maximum circular eccentricity of 0.5 by using the ray-tracing method. Results obtained for the clad parabolic profile GI fibre (only the most significant combinations). All the parameters have been normalized.

Fig. 3.
Fig. 3.

Cumulative percentage of fibre joints having intrinsic coupling losses below a given value. Results obtained for simulations of 5000 trials and for SI and clad parabolic profile GI fibres by using the ray–tracing method.

Fig. 4.
Fig. 4.

Refractive index profiles corresponding to the two MSI–POFs used.

Fig. 5.
Fig. 5.

Cumulative percentage of fibre joints having intrinsic coupling losses below a given value. Results obtained for simulations of 5000 trials and for different MSI fibres by using the ray–tracing method.

Fig. 6.
Fig. 6.

Near- and far-fields of the transmitting fibre with NAinput =0.57 in the computer simulations for MSI fibres.

Tables (3)

Tables Icon

Table 1. Statistical results obtained for the 50% loss L 50 and the 90% loss L 90 for SI and clad parabolic profile GI fibres by using the ray–tracing method.

Tables Icon

Table 2. Physical dimensions of the different layers (radii in mm).

Tables Icon

Table 3. Statistical results obtained for the 50% loss L 50 and the 90% loss L 90 for different MSI fibres by using the ray–tracing method.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n ( r ) = { n 1 ; r < ρ 1 , n 2 ; ρ 1 r < ρ 2 , n N ; ρ N 1 r < ρ N , n c l ; r ρ N .
ξ = i = 1 N ( ρ i 2 ρ i 1 2 ) ( n i 2 n c l 2 ) n 0 2 ρ N 2 ( ρ 0 = 0 ) ,

Metrics