Abstract

We demonstrate a novel hollow waveguide optical switch composed of an multi-mode interference (MMI) coupler with a variable air core. The numerical simulation and experiment of the proposed optical switch is carried out for investigating the operation of the switch. Switching operation can be obtained by the mechanical displacement of the air core of an MMI hollow waveguide. A hollow waveguide consists of Au mirrors deposited on two GaAs substrates for optical confinement. The measured result shows a possibility of switching of about 85% optical power fraction with a switch length of 1.1 mm and small displacement (ΔDcore=3 µm) of an air core thickness. The measured insertion losses of a 1.1 mm long hollow waveguide with 12 and 9 µm air core are 5.4 dB and 5.7 dB respectively.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nojima, “Enhancement of excitonic electro-refraction by optimizing quantum well materials and structures,” Appl. Phys. Lett. 55, 1868–1870 (1989).
    [Crossref]
  2. T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer, and F. Lederer, “Beam steering in waveguide arrays,” Appl. Phys. Lett. 80, 3247–3249 (2002).
    [Crossref]
  3. Jianyi Yang, Qingjun Zhou, and Ray T. Chen, “Polymide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81, 2947–2949 (2002).
    [Crossref]
  4. S. Toyoda, N. Ooba, Y. Katoh, T. Kurihara, and T. Maruno, “Low crosstalk and low loss 2x2 thermo-optic digital optical switch using silicone resin waveguides,” Electron. Lett. 36, 1803–1804 (2000).
    [Crossref]
  5. E. V. Tomme, Peter P. Van Daele, Roel G. Baets, and Paul E. Lagasse, “Integrated optic devices based on nonlinear optical polymers,” IEEE J. Quantum Electron 27, 778–787 (1991).
    [Crossref]
  6. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
    [Crossref]
  7. U. Fischer, B. Schuppert, and K Petermann “Optical waveguide switches in silicon based on Ge-indiffused waveguides,” IEEE Photon. Technol. Lett. 6, 978–980 (1994).
    [Crossref]
  8. B. Liu, A. Shakier, P. Abraham, and J. E. Bowers, “Fused vertical coupler switches,” Electron. Lett. 34, 2160–2161 (1998).
    [Crossref]
  9. T. Miura, F. Koyama, Y. Aoki, A. Matsutani, and K. Iga, “Hollow optical waveguide for temperature-insensitive photonic integrated circuits,” Jpn. J. Appl. Phys. 40, L688–L690 (2001).
    [Crossref]
  10. T. Miura, F. Koyama, and A. Matsutani, “Modeling and fabrication of hollow optical waveguide for photonic integrated circuits,” Jpn. J. Appl. Phys. 41, 4785–4789 (2002).
    [Crossref]
  11. R.N. Jenkins, M.E. McNie, A.F. Blockly, N. Price, and J. McQuillan, “Hollow waveguides for integrated optics,” Proc. 29th ECOC, Rimini, Italy, Tu1. 2.4, 162–163 (2003).
  12. A. Yehia, K. Madkour, H. Maaty, and D. Khalil, “Multiple-imaging in 2-D MMI silicon hollow waveguides,” IEEE Photon. Technol. Lett. 16, 2072–2074 (2004).
    [Crossref]
  13. C. H. Bae and F. Koyama, “Modeling of hollow waveguide optical switch with variable air core,” IEICE ELEX,  1, 551–555 (2004).
    [Crossref]
  14. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Technol. 10, 615–627 (1995).
    [Crossref]

2004 (3)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[Crossref]

A. Yehia, K. Madkour, H. Maaty, and D. Khalil, “Multiple-imaging in 2-D MMI silicon hollow waveguides,” IEEE Photon. Technol. Lett. 16, 2072–2074 (2004).
[Crossref]

C. H. Bae and F. Koyama, “Modeling of hollow waveguide optical switch with variable air core,” IEICE ELEX,  1, 551–555 (2004).
[Crossref]

2003 (1)

R.N. Jenkins, M.E. McNie, A.F. Blockly, N. Price, and J. McQuillan, “Hollow waveguides for integrated optics,” Proc. 29th ECOC, Rimini, Italy, Tu1. 2.4, 162–163 (2003).

2002 (3)

T. Miura, F. Koyama, and A. Matsutani, “Modeling and fabrication of hollow optical waveguide for photonic integrated circuits,” Jpn. J. Appl. Phys. 41, 4785–4789 (2002).
[Crossref]

T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer, and F. Lederer, “Beam steering in waveguide arrays,” Appl. Phys. Lett. 80, 3247–3249 (2002).
[Crossref]

Jianyi Yang, Qingjun Zhou, and Ray T. Chen, “Polymide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81, 2947–2949 (2002).
[Crossref]

2001 (1)

T. Miura, F. Koyama, Y. Aoki, A. Matsutani, and K. Iga, “Hollow optical waveguide for temperature-insensitive photonic integrated circuits,” Jpn. J. Appl. Phys. 40, L688–L690 (2001).
[Crossref]

2000 (1)

S. Toyoda, N. Ooba, Y. Katoh, T. Kurihara, and T. Maruno, “Low crosstalk and low loss 2x2 thermo-optic digital optical switch using silicone resin waveguides,” Electron. Lett. 36, 1803–1804 (2000).
[Crossref]

1998 (1)

B. Liu, A. Shakier, P. Abraham, and J. E. Bowers, “Fused vertical coupler switches,” Electron. Lett. 34, 2160–2161 (1998).
[Crossref]

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Technol. 10, 615–627 (1995).
[Crossref]

1994 (1)

U. Fischer, B. Schuppert, and K Petermann “Optical waveguide switches in silicon based on Ge-indiffused waveguides,” IEEE Photon. Technol. Lett. 6, 978–980 (1994).
[Crossref]

1991 (1)

E. V. Tomme, Peter P. Van Daele, Roel G. Baets, and Paul E. Lagasse, “Integrated optic devices based on nonlinear optical polymers,” IEEE J. Quantum Electron 27, 778–787 (1991).
[Crossref]

1989 (1)

S. Nojima, “Enhancement of excitonic electro-refraction by optimizing quantum well materials and structures,” Appl. Phys. Lett. 55, 1868–1870 (1989).
[Crossref]

Abraham, P.

B. Liu, A. Shakier, P. Abraham, and J. E. Bowers, “Fused vertical coupler switches,” Electron. Lett. 34, 2160–2161 (1998).
[Crossref]

Aoki, Y.

T. Miura, F. Koyama, Y. Aoki, A. Matsutani, and K. Iga, “Hollow optical waveguide for temperature-insensitive photonic integrated circuits,” Jpn. J. Appl. Phys. 40, L688–L690 (2001).
[Crossref]

Bae, C. H.

C. H. Bae and F. Koyama, “Modeling of hollow waveguide optical switch with variable air core,” IEICE ELEX,  1, 551–555 (2004).
[Crossref]

Baets, Roel G.

E. V. Tomme, Peter P. Van Daele, Roel G. Baets, and Paul E. Lagasse, “Integrated optic devices based on nonlinear optical polymers,” IEEE J. Quantum Electron 27, 778–787 (1991).
[Crossref]

Blockly, A.F.

R.N. Jenkins, M.E. McNie, A.F. Blockly, N. Price, and J. McQuillan, “Hollow waveguides for integrated optics,” Proc. 29th ECOC, Rimini, Italy, Tu1. 2.4, 162–163 (2003).

Bowers, J. E.

B. Liu, A. Shakier, P. Abraham, and J. E. Bowers, “Fused vertical coupler switches,” Electron. Lett. 34, 2160–2161 (1998).
[Crossref]

Bozhevolnyi, S. I.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[Crossref]

Brauer, A.

T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer, and F. Lederer, “Beam steering in waveguide arrays,” Appl. Phys. Lett. 80, 3247–3249 (2002).
[Crossref]

Chen, Ray T.

Jianyi Yang, Qingjun Zhou, and Ray T. Chen, “Polymide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81, 2947–2949 (2002).
[Crossref]

Fischer, U.

U. Fischer, B. Schuppert, and K Petermann “Optical waveguide switches in silicon based on Ge-indiffused waveguides,” IEEE Photon. Technol. Lett. 6, 978–980 (1994).
[Crossref]

Iga, K.

T. Miura, F. Koyama, Y. Aoki, A. Matsutani, and K. Iga, “Hollow optical waveguide for temperature-insensitive photonic integrated circuits,” Jpn. J. Appl. Phys. 40, L688–L690 (2001).
[Crossref]

Jenkins, R.N.

R.N. Jenkins, M.E. McNie, A.F. Blockly, N. Price, and J. McQuillan, “Hollow waveguides for integrated optics,” Proc. 29th ECOC, Rimini, Italy, Tu1. 2.4, 162–163 (2003).

Katoh, Y.

S. Toyoda, N. Ooba, Y. Katoh, T. Kurihara, and T. Maruno, “Low crosstalk and low loss 2x2 thermo-optic digital optical switch using silicone resin waveguides,” Electron. Lett. 36, 1803–1804 (2000).
[Crossref]

Khalil, D.

A. Yehia, K. Madkour, H. Maaty, and D. Khalil, “Multiple-imaging in 2-D MMI silicon hollow waveguides,” IEEE Photon. Technol. Lett. 16, 2072–2074 (2004).
[Crossref]

Koyama, F.

C. H. Bae and F. Koyama, “Modeling of hollow waveguide optical switch with variable air core,” IEICE ELEX,  1, 551–555 (2004).
[Crossref]

T. Miura, F. Koyama, and A. Matsutani, “Modeling and fabrication of hollow optical waveguide for photonic integrated circuits,” Jpn. J. Appl. Phys. 41, 4785–4789 (2002).
[Crossref]

T. Miura, F. Koyama, Y. Aoki, A. Matsutani, and K. Iga, “Hollow optical waveguide for temperature-insensitive photonic integrated circuits,” Jpn. J. Appl. Phys. 40, L688–L690 (2001).
[Crossref]

Kurihara, T.

S. Toyoda, N. Ooba, Y. Katoh, T. Kurihara, and T. Maruno, “Low crosstalk and low loss 2x2 thermo-optic digital optical switch using silicone resin waveguides,” Electron. Lett. 36, 1803–1804 (2000).
[Crossref]

Lagasse, Paul E.

E. V. Tomme, Peter P. Van Daele, Roel G. Baets, and Paul E. Lagasse, “Integrated optic devices based on nonlinear optical polymers,” IEEE J. Quantum Electron 27, 778–787 (1991).
[Crossref]

Lederer, F.

T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer, and F. Lederer, “Beam steering in waveguide arrays,” Appl. Phys. Lett. 80, 3247–3249 (2002).
[Crossref]

Leosson, K.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[Crossref]

Liu, B.

B. Liu, A. Shakier, P. Abraham, and J. E. Bowers, “Fused vertical coupler switches,” Electron. Lett. 34, 2160–2161 (1998).
[Crossref]

Maaty, H.

A. Yehia, K. Madkour, H. Maaty, and D. Khalil, “Multiple-imaging in 2-D MMI silicon hollow waveguides,” IEEE Photon. Technol. Lett. 16, 2072–2074 (2004).
[Crossref]

Madkour, K.

A. Yehia, K. Madkour, H. Maaty, and D. Khalil, “Multiple-imaging in 2-D MMI silicon hollow waveguides,” IEEE Photon. Technol. Lett. 16, 2072–2074 (2004).
[Crossref]

Maruno, T.

S. Toyoda, N. Ooba, Y. Katoh, T. Kurihara, and T. Maruno, “Low crosstalk and low loss 2x2 thermo-optic digital optical switch using silicone resin waveguides,” Electron. Lett. 36, 1803–1804 (2000).
[Crossref]

Matsutani, A.

T. Miura, F. Koyama, and A. Matsutani, “Modeling and fabrication of hollow optical waveguide for photonic integrated circuits,” Jpn. J. Appl. Phys. 41, 4785–4789 (2002).
[Crossref]

T. Miura, F. Koyama, Y. Aoki, A. Matsutani, and K. Iga, “Hollow optical waveguide for temperature-insensitive photonic integrated circuits,” Jpn. J. Appl. Phys. 40, L688–L690 (2001).
[Crossref]

McNie, M.E.

R.N. Jenkins, M.E. McNie, A.F. Blockly, N. Price, and J. McQuillan, “Hollow waveguides for integrated optics,” Proc. 29th ECOC, Rimini, Italy, Tu1. 2.4, 162–163 (2003).

McQuillan, J.

R.N. Jenkins, M.E. McNie, A.F. Blockly, N. Price, and J. McQuillan, “Hollow waveguides for integrated optics,” Proc. 29th ECOC, Rimini, Italy, Tu1. 2.4, 162–163 (2003).

Miura, T.

T. Miura, F. Koyama, and A. Matsutani, “Modeling and fabrication of hollow optical waveguide for photonic integrated circuits,” Jpn. J. Appl. Phys. 41, 4785–4789 (2002).
[Crossref]

T. Miura, F. Koyama, Y. Aoki, A. Matsutani, and K. Iga, “Hollow optical waveguide for temperature-insensitive photonic integrated circuits,” Jpn. J. Appl. Phys. 40, L688–L690 (2001).
[Crossref]

Nikolajsen, T.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[Crossref]

Nojima, S.

S. Nojima, “Enhancement of excitonic electro-refraction by optimizing quantum well materials and structures,” Appl. Phys. Lett. 55, 1868–1870 (1989).
[Crossref]

Ooba, N.

S. Toyoda, N. Ooba, Y. Katoh, T. Kurihara, and T. Maruno, “Low crosstalk and low loss 2x2 thermo-optic digital optical switch using silicone resin waveguides,” Electron. Lett. 36, 1803–1804 (2000).
[Crossref]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Technol. 10, 615–627 (1995).
[Crossref]

Pertsch, T.

T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer, and F. Lederer, “Beam steering in waveguide arrays,” Appl. Phys. Lett. 80, 3247–3249 (2002).
[Crossref]

Peschel, U.

T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer, and F. Lederer, “Beam steering in waveguide arrays,” Appl. Phys. Lett. 80, 3247–3249 (2002).
[Crossref]

Petermann, K

U. Fischer, B. Schuppert, and K Petermann “Optical waveguide switches in silicon based on Ge-indiffused waveguides,” IEEE Photon. Technol. Lett. 6, 978–980 (1994).
[Crossref]

Price, N.

R.N. Jenkins, M.E. McNie, A.F. Blockly, N. Price, and J. McQuillan, “Hollow waveguides for integrated optics,” Proc. 29th ECOC, Rimini, Italy, Tu1. 2.4, 162–163 (2003).

Schuppert, B.

U. Fischer, B. Schuppert, and K Petermann “Optical waveguide switches in silicon based on Ge-indiffused waveguides,” IEEE Photon. Technol. Lett. 6, 978–980 (1994).
[Crossref]

Shakier, A.

B. Liu, A. Shakier, P. Abraham, and J. E. Bowers, “Fused vertical coupler switches,” Electron. Lett. 34, 2160–2161 (1998).
[Crossref]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Technol. 10, 615–627 (1995).
[Crossref]

Tomme, E. V.

E. V. Tomme, Peter P. Van Daele, Roel G. Baets, and Paul E. Lagasse, “Integrated optic devices based on nonlinear optical polymers,” IEEE J. Quantum Electron 27, 778–787 (1991).
[Crossref]

Toyoda, S.

S. Toyoda, N. Ooba, Y. Katoh, T. Kurihara, and T. Maruno, “Low crosstalk and low loss 2x2 thermo-optic digital optical switch using silicone resin waveguides,” Electron. Lett. 36, 1803–1804 (2000).
[Crossref]

Van Daele, Peter P.

E. V. Tomme, Peter P. Van Daele, Roel G. Baets, and Paul E. Lagasse, “Integrated optic devices based on nonlinear optical polymers,” IEEE J. Quantum Electron 27, 778–787 (1991).
[Crossref]

Yang, Jianyi

Jianyi Yang, Qingjun Zhou, and Ray T. Chen, “Polymide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81, 2947–2949 (2002).
[Crossref]

Yehia, A.

A. Yehia, K. Madkour, H. Maaty, and D. Khalil, “Multiple-imaging in 2-D MMI silicon hollow waveguides,” IEEE Photon. Technol. Lett. 16, 2072–2074 (2004).
[Crossref]

Zentgraf, T.

T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer, and F. Lederer, “Beam steering in waveguide arrays,” Appl. Phys. Lett. 80, 3247–3249 (2002).
[Crossref]

Zhou, Qingjun

Jianyi Yang, Qingjun Zhou, and Ray T. Chen, “Polymide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81, 2947–2949 (2002).
[Crossref]

Appl. Phys. Lett. (4)

S. Nojima, “Enhancement of excitonic electro-refraction by optimizing quantum well materials and structures,” Appl. Phys. Lett. 55, 1868–1870 (1989).
[Crossref]

T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer, and F. Lederer, “Beam steering in waveguide arrays,” Appl. Phys. Lett. 80, 3247–3249 (2002).
[Crossref]

Jianyi Yang, Qingjun Zhou, and Ray T. Chen, “Polymide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81, 2947–2949 (2002).
[Crossref]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[Crossref]

Electron. Lett. (2)

S. Toyoda, N. Ooba, Y. Katoh, T. Kurihara, and T. Maruno, “Low crosstalk and low loss 2x2 thermo-optic digital optical switch using silicone resin waveguides,” Electron. Lett. 36, 1803–1804 (2000).
[Crossref]

B. Liu, A. Shakier, P. Abraham, and J. E. Bowers, “Fused vertical coupler switches,” Electron. Lett. 34, 2160–2161 (1998).
[Crossref]

IEEE J. Quantum Electron (1)

E. V. Tomme, Peter P. Van Daele, Roel G. Baets, and Paul E. Lagasse, “Integrated optic devices based on nonlinear optical polymers,” IEEE J. Quantum Electron 27, 778–787 (1991).
[Crossref]

IEEE Photon. Technol. Lett. (2)

U. Fischer, B. Schuppert, and K Petermann “Optical waveguide switches in silicon based on Ge-indiffused waveguides,” IEEE Photon. Technol. Lett. 6, 978–980 (1994).
[Crossref]

A. Yehia, K. Madkour, H. Maaty, and D. Khalil, “Multiple-imaging in 2-D MMI silicon hollow waveguides,” IEEE Photon. Technol. Lett. 16, 2072–2074 (2004).
[Crossref]

IEICE ELEX (1)

C. H. Bae and F. Koyama, “Modeling of hollow waveguide optical switch with variable air core,” IEICE ELEX,  1, 551–555 (2004).
[Crossref]

J. Lightwave Technol. (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Technol. 10, 615–627 (1995).
[Crossref]

Jpn. J. Appl. Phys. (2)

T. Miura, F. Koyama, Y. Aoki, A. Matsutani, and K. Iga, “Hollow optical waveguide for temperature-insensitive photonic integrated circuits,” Jpn. J. Appl. Phys. 40, L688–L690 (2001).
[Crossref]

T. Miura, F. Koyama, and A. Matsutani, “Modeling and fabrication of hollow optical waveguide for photonic integrated circuits,” Jpn. J. Appl. Phys. 41, 4785–4789 (2002).
[Crossref]

Proc. 29th ECOC, Rimini, Italy, Tu1. (1)

R.N. Jenkins, M.E. McNie, A.F. Blockly, N. Price, and J. McQuillan, “Hollow waveguides for integrated optics,” Proc. 29th ECOC, Rimini, Italy, Tu1. 2.4, 162–163 (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic structure of proposed hollow waveguide optical switch composed of a MMI coupler with a variable air core.

Fig. 2.
Fig. 2.

Schematic cross-sectional view of the hollow waveguide MMI coupler optical switch.

Fig. 3.
Fig. 3.

Calculated field distribution of an MMI coupler. Top view and cross-sectional view for (a-1) 12 µm and for (a-2) 10 µm, respectively. Calculated optical intensity distribution at a distance of 1.2mm.

Fig. 4.
Fig. 4.

Measured field distribution of MMI coupler (a) Dcore=12 µm, (b) Dcore=9 µm

Fig. 5.
Fig. 5.

Measured optical intensity distribution at a distance of 1.1 mm for 9 µm and 12 µm air core.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L π = π β 0 β 1 4 n r W e 2 3 λ 0 ,

Metrics