Abstract

For the first time in vivo retinal imaging has been performed with a new compact, low noise Yb-based ASE source operating in the 1 µm range (NP Photonics, λc=1040 nm, Δλ=50 nm, Pout=30 mW) at the dispersion minimum of water with ~7 µm axial resolution. OCT tomograms acquired at 800 nm are compared to those achieved at 1040 nm showing about 200 µm deeper penetration into the choroid below the retinal pigment epithelium. Retinal OCT at longer wavelengths significantly improves the visualization of the retinal pigment epithelium/choriocapillaris/choroid interface and superficial choroidal layers as well as reduces the scattering through turbid media and therefore might provide a better diagnosis tool for early stages of retinal pathologies such as age related macular degeneration which is accompanied by choroidal neovascularization, i.e. extensive growth of new blood vessels in the choroid and retina.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J. G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178-81 (1991).
    [CrossRef] [PubMed]
  2. J.S. Schuman, C.A. Puliafito, and J. G. Fujimoto, �??Optical coherence tomography of ocular disease,�?? Slack Inc, Thorofare, New Jersey (2004).
  3. J. G. Fujimoto, M. E Brezinski., G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson,�??Optical biopsy and imaging using optical coherence tomography,�?? Nature Medicine 1, 970-2 (1995).
    [CrossRef] [PubMed]
  4. A. F. Fercher, �??Optical coherence tomography,�?? J. Biomed. Opt. 1, 157-73 (1996)
    [CrossRef]
  5. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, �??In vivo ultrahigh resolution optical coherence tomography,�?? Opt. Lett. 24, 1221-1223 (1999).
    [CrossRef]
  6. W. Drexler, U. Morgner, R. K. Ghanta, J. S. Schuman, F. X. Kärtner, and J. G. Fujimoto, �??Ultrahigh-resolution ophthalmic optical coherence tomography,�?? Nature Medicine 7, 502-507 (2001).
    [CrossRef] [PubMed]
  7. W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, �??Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,�?? Arch. Ophthalmol 121, 695-706 (2003).
    [CrossRef] [PubMed]
  8. W. Drexler, �??Ultrahigh resolution optical coherence tomography,�?? J. Biomed. Opt. 9 (1), 47-74 (2004).
    [CrossRef] [PubMed]
  9. B. Považay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, �??Submicrometer axial resolution optical coherence tomography,�?? Opt. Lett. 27, 1800-1803 (2002)
    [CrossRef]
  10. T. H. Ko, J. G. Fujimoto, J. S. Duker, L. A. Paunescu, W. Drexler, C. R. Baumal, C. A. Puliafito, E. Reichel, A. H. Rogers, and J. S. Schuman, �??Comparison of ultrahigh- and standard- resolution optical coherence tomography for imaging macular hole pathology and repair,�?? Ophthalmology 111, 2033-2043 (2004).
    [CrossRef] [PubMed]
  11. E. Ergun, B. Hermann, M. Wirtitsch, A. Unterhuber, T. H. Ko, H. Sattmann, C. Scholda, J. G. Fujimoto, M. Stur, and W. Drexler, �??Assessment of central visual function in Stargardt`s disease/Fundus flavimaculatus with ultrahigh-resolution optical coherence tomography,�?? Invest. Ophthalmo. Vis. Sci. 46, 310-316 (2005)
    [CrossRef]
  12. G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler , and J. S. Schuman, �??Ultrahigh-resolution optical coherence tomography in glaucoma,�?? Ophthalmology 112, 229-237 (2005).
    [CrossRef] [PubMed]
  13. M. Hammer, A. Roggan, D. Schweitzer and G. Müller, �??Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,�?? Phys. Med. Biol. 40, 963-978 (1995).
    [CrossRef] [PubMed]
  14. American National Standards Institute, �??American National Standard for Safe Use of Lasers,�?? ANSI Z 136-1 (2000).
  15. International Comission of Non-Ionizing Radiation Protection, �??Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 µm,�?? Health Phy. 79, 432-440 (2000).
  16. G. M. Hale, and M. R. Querry, �??Optical constants of water in the 200 nm to 200 µm wavelength region," Appl. Opt. 12, 555-563 (1973).
    [CrossRef] [PubMed]
  17. B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. Russell, �??Enhanced visualization of choriodal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,�?? Opt. Express 11, 1980-1986 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-1980">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-1980</a>.
    [CrossRef] [PubMed]
  18. A. Unterhuber, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, �??Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,�?? Opt. Lett. 28, 905-907 (2003)
    [CrossRef] [PubMed]
  19. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, �??High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,�?? Opt. Express 11, 3598-3604 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3598">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3598</a>.
    [CrossRef] [PubMed]

Appl. Opt. (1)

Arch. Ophthalmol (1)

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, �??Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,�?? Arch. Ophthalmol 121, 695-706 (2003).
[CrossRef] [PubMed]

Health Phy. (1)

International Comission of Non-Ionizing Radiation Protection, �??Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 µm,�?? Health Phy. 79, 432-440 (2000).

Invest. Ophthalmo. Vis. Sci. (1)

E. Ergun, B. Hermann, M. Wirtitsch, A. Unterhuber, T. H. Ko, H. Sattmann, C. Scholda, J. G. Fujimoto, M. Stur, and W. Drexler, �??Assessment of central visual function in Stargardt`s disease/Fundus flavimaculatus with ultrahigh-resolution optical coherence tomography,�?? Invest. Ophthalmo. Vis. Sci. 46, 310-316 (2005)
[CrossRef]

J. Biomed. Opt. (2)

W. Drexler, �??Ultrahigh resolution optical coherence tomography,�?? J. Biomed. Opt. 9 (1), 47-74 (2004).
[CrossRef] [PubMed]

A. F. Fercher, �??Optical coherence tomography,�?? J. Biomed. Opt. 1, 157-73 (1996)
[CrossRef]

Nature Medicine (2)

J. G. Fujimoto, M. E Brezinski., G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson,�??Optical biopsy and imaging using optical coherence tomography,�?? Nature Medicine 1, 970-2 (1995).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, J. S. Schuman, F. X. Kärtner, and J. G. Fujimoto, �??Ultrahigh-resolution ophthalmic optical coherence tomography,�?? Nature Medicine 7, 502-507 (2001).
[CrossRef] [PubMed]

Ophthalmology (2)

G. Wollstein, L. A. Paunescu, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, I. Hartl, S. Beaton, H. Ishikawa, C. Mattox, O. Singh, J. Duker, W. Drexler , and J. S. Schuman, �??Ultrahigh-resolution optical coherence tomography in glaucoma,�?? Ophthalmology 112, 229-237 (2005).
[CrossRef] [PubMed]

T. H. Ko, J. G. Fujimoto, J. S. Duker, L. A. Paunescu, W. Drexler, C. R. Baumal, C. A. Puliafito, E. Reichel, A. H. Rogers, and J. S. Schuman, �??Comparison of ultrahigh- and standard- resolution optical coherence tomography for imaging macular hole pathology and repair,�?? Ophthalmology 111, 2033-2043 (2004).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Phys. Med. Biol. (1)

M. Hammer, A. Roggan, D. Schweitzer and G. Müller, �??Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,�?? Phys. Med. Biol. 40, 963-978 (1995).
[CrossRef] [PubMed]

Science (1)

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J. G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178-81 (1991).
[CrossRef] [PubMed]

Other (2)

J.S. Schuman, C.A. Puliafito, and J. G. Fujimoto, �??Optical coherence tomography of ocular disease,�?? Slack Inc, Thorofare, New Jersey (2004).

American National Standards Institute, �??American National Standard for Safe Use of Lasers,�?? ANSI Z 136-1 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Simple model of the human eye. The allowed power density for collimated laser light for 10 s continuous illumination of the cornea according to ANSI laser safety standard as well as ICRNIRP-guidelines is given in black. The green line shows the maximum power density from the front surface of the retina (internal limiting membrane) after double passing 25 mm of water of the anterior eye segment (AES) and vitreous while the blue line indicates the back surface of the photoreceptor outer segment. Water absorption mainly reduces the maximum power densities after double pass. The respective power densities from beneath the highly absorbing and scattering monocellular retinal pigment epithelium (RPE) are given in brown and from the Bruch’s membrane and choriochapillaris (CC) in orange. Representative backscattering sites inside the highly scattering choroid in a depth of 150 µm are depicted in thick red and at 300 µm in thin red. The relative spreading of the axial point spread function corresponding to a 100 nm wide spectrum at 1000 nm due to the dispersion of water corresponding to a 500 µm thick sample is shown in dash dotted grey.

Fig. 2.
Fig. 2.

Comparison of in vivo retinal OCT of the same human fovea using 800 nm (a) with 3 µm and 1040 nm (b) with 7 µm axial resolution. Both OCT systems have comparable sensitivity of ~95 dB. Deeper penetration into the choroid is accomplished by using 1040 nm, enabling the visualization of choroidal vessels and branching (B red asteriks) shown in two times magnification of the corresponding tomograms. Intensity diagrams obtained at 800 nm (blue curve) and 1040 nm (red curve) at similar positions depict a significant higher signal at and below the RPE at 1040 nm. A penetration depth of about 500 µm is achieved at 1040 nm in contrast to a penetration depth of about 300 µm at 800 nm.

Fig. 3.
Fig. 3.

Horizontal (a) and vertical (b) OCT cross-section performed with an ASE based ophthalmic OCT system centered at 1040 nm with 7 µm axial resolution. Due to enhanced penetration into the choroid several vessels are clearly visualized in the parapapillary region (arrows).

Fig. 4.
Fig. 4.

Comparison of in vivo retinal OCT of a healthy human fovea at 1040 nm (a) with a human fovea with RPE atrophy (b) at 800 nm, where regions with intact RPE and defect RPE can clearly be distinguished. Only the region with defect RPE in the center indicated by the two arrows in figure B has comparable penetration at 800 nm to the tomogram acquired at 1040 nm due to reduced melanin concentration. Towards the margins at regions with intact RPE the penetration is significantly less than at 1040 nm and comparable to the tomogram acquired at 800 nm.

Metrics