Abstract

A resonant diffraction grating comprising a mirror, a dielectric layer and a high index corrugation at the layer-air interface is shown to exhibit off-Littrow the record diffraction efficiency of 99% in the -1st reflected order at 1064 nm wavelength thanks to the excitation of a leaky mode of the layer. Such high figure is obtained by a grating 5 to 10 times shallower than in current attempts to realize high efficiency all-dielectric gratings.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G.A. Golubenko, A.S. Svakhin, A.V. Tishchenko, V.A Sychugov, �??Total reflection of light from the corrugated surface of a dielectric waveguide,�?? Sov. J. Quantum Electron. 15, 886-887 (1985).
    [CrossRef]
  2. A.V. Tishchenko, V.A. Sychugov, �??High grating efficiency by energy accumulation in a leaky mode,�?? Opt. and Quantum Electron. 32, 1027-1031 (2000).
    [CrossRef]
  3. V.A. Sychugov, A.V. Tishchenko, �??Light emission from a corrugated dielectric waveguide,�?? Sov. J. Quantum Electron. 10 (2), 186-189 (1980).
    [CrossRef]
  4. I.A. Avrutsky, V. A. Sychugov �??Reflection of a beam of finite size from a corrugated waveguide,�?? J. Mod. Opt. 36, 1527 (1989).
    [CrossRef]
  5. O. Parriaux, V. A. Sychugov, A. V. Tishchenko, �??Coupling gratings as functional elements,�?? Pure Appl. Opt. 5, 453-469 (1996).
    [CrossRef]
  6. S.S. Wang, R. Magnusson, �??Theory and applications of guided-mode resonance filters,�?? Appl. Opt. 32, 2606-2613 (1993).
    [CrossRef] [PubMed]
  7. K. Hehl, J. Bischoff, U. Mohaupt, M. Palme, B. Schnabel, L, Wenke, R. Boedefeld, W. Theobald, E. Welsch, R. Sauerbrey, H. Heyer, �??High-efficiency dielectric reflection gratings: design, fabrication and analysis,�?? Appl. Opt. 38, 6257-6271 (1999).
    [CrossRef]
  8. R. Ulrich, W. Prettl, �??Planar leaky light-guides and couplers,�?? Appl. Phys. 1, 55-68 (1973).
    [CrossRef]
  9. J.D. Decotignie, O. Parriaux, F.E. Gardiol, �??Wave propagation in lossy and leaky planar optical waveguides,�?? AE�?, Band 35, 201-204 (1981).
  10. I.F. Salakhutdinov, V.A. Sychugov, O. Parriaux, �??Highly efficient diffraction gratings for use in the Littman-Metcalf mounting,�?? Quantum Electron. 28, 983-986 (1998).
    [CrossRef]
  11. T. Clausnitzer, T. Schreiber, F. Röser, J. Limpert, E.-B. Kley, H.- J. Fuchs, A. Tuennermann, �??Highly efficient dielectric gratings for high power ultrafast fiberlaser systems,�?? SPIE Photonics West 22-27 January, 2005, Conference Proceeding No 5714 Commercial and Biomedical Applications of Ultrafast Lasers VII (in print), Paper No 49.
  12. H. Wei, L. Li, �??All-dielectric reflection gratings: a study of the physical mechanism for achieving high efficiency,�?? Appl. Opt. 42 (31), 6255-6260 (2003).
    [CrossRef] [PubMed]
  13. M. D. Perry, R.D. Boyd, J.A. Decker, B.W. Shore, C. Shannon, E. Shults, �??High-efficiency multilayer dielectric diffraction gratings,�?? Opt. Lett. 20, 940-942 (1995).
    [CrossRef] [PubMed]
  14. B. Touzet, J. R. Gilchrist, �??Multilayer dielectric gratings enable more-powerful high-energy lasers,�?? Photonics Spectra, 68-75, Sept 2003.
  15. M. A. Ahmed, J.-C. Pommier, F. Pigeon, O. Parriaux, �??Flux resistance degradation in resonant grating multilayer mirror,�?? SPIE 5250, 27 (2003).

AE??

J.D. Decotignie, O. Parriaux, F.E. Gardiol, �??Wave propagation in lossy and leaky planar optical waveguides,�?? AE�?, Band 35, 201-204 (1981).

Appl. Opt.

Appl. Phys.

R. Ulrich, W. Prettl, �??Planar leaky light-guides and couplers,�?? Appl. Phys. 1, 55-68 (1973).
[CrossRef]

J. Mod. Opt.

I.A. Avrutsky, V. A. Sychugov �??Reflection of a beam of finite size from a corrugated waveguide,�?? J. Mod. Opt. 36, 1527 (1989).
[CrossRef]

Opt. and Quantum Electron.

A.V. Tishchenko, V.A. Sychugov, �??High grating efficiency by energy accumulation in a leaky mode,�?? Opt. and Quantum Electron. 32, 1027-1031 (2000).
[CrossRef]

Opt. Lett.

Photonics Spectra, Sept. 2003

B. Touzet, J. R. Gilchrist, �??Multilayer dielectric gratings enable more-powerful high-energy lasers,�?? Photonics Spectra, 68-75, Sept 2003.

Proc SPIE

M. A. Ahmed, J.-C. Pommier, F. Pigeon, O. Parriaux, �??Flux resistance degradation in resonant grating multilayer mirror,�?? SPIE 5250, 27 (2003).

Proc. SPIE

T. Clausnitzer, T. Schreiber, F. Röser, J. Limpert, E.-B. Kley, H.- J. Fuchs, A. Tuennermann, �??Highly efficient dielectric gratings for high power ultrafast fiberlaser systems,�?? SPIE Photonics West 22-27 January, 2005, Conference Proceeding No 5714 Commercial and Biomedical Applications of Ultrafast Lasers VII (in print), Paper No 49.

Pure Appl. Opt.

O. Parriaux, V. A. Sychugov, A. V. Tishchenko, �??Coupling gratings as functional elements,�?? Pure Appl. Opt. 5, 453-469 (1996).
[CrossRef]

Quantum Electron.

I.F. Salakhutdinov, V.A. Sychugov, O. Parriaux, �??Highly efficient diffraction gratings for use in the Littman-Metcalf mounting,�?? Quantum Electron. 28, 983-986 (1998).
[CrossRef]

Sov. J. Quantum Electron.

G.A. Golubenko, A.S. Svakhin, A.V. Tishchenko, V.A Sychugov, �??Total reflection of light from the corrugated surface of a dielectric waveguide,�?? Sov. J. Quantum Electron. 15, 886-887 (1985).
[CrossRef]

V.A. Sychugov, A.V. Tishchenko, �??Light emission from a corrugated dielectric waveguide,�?? Sov. J. Quantum Electron. 10 (2), 186-189 (1980).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Fresnel reflection mechanism on a mirror based corrugated dielectric film : direct reflection, field trapping, leaky mode propagation and re-radiation. The corrugation balances the direct reflected and the re-radiated field modulus ensuring 100% −1st order efficiency. The inset represents the fabricated multilayer grating structure.

Fig. 2.
Fig. 2.

AFM scan of the 560 nm period grating etched into the last Ta2O5 layer of 70 nm thickness.

Fig. 3.
Fig. 3.

Comparison of the experimental and the theoretical diffraction efficiencies of the −1st order for the TE polarization. Calculations are performed taking into account the groove depth experimental value of 52 nm and a line/space ratio of 0.85. Both experiments and calculations are performed at a wavelength of 1064 nm with a variable incidence angle. The diffraction efficiency is defined as the ratio between the diffracted power and the incident power.

Fig. 4.
Fig. 4.

Comparison of the experimental and the theoretical diffraction efficiencies in the 0th order in TM polarization. Both experiments and calculations are performed at a wavelength of 1064 nm with a variable incidence angle. In this case, TM leaky mode excitation condition is not fulfilled and −1st order efficiency is practically zero.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k 0 n f h cos θ f + ϕ m + ϕ c 2 = m π
k 0 n f h cos θ f = π 2

Metrics