Abstract

Abstract We discuss laser cooling opportunities in atomic erbium, identifying five JJ+1 transitions from the 4f126s2 3H6 ground state that are accessible to common visible and near-infrared continuous-wave tunable lasers. We present lifetime measurements for the 4f11(4Io15/2)5d5/26s2 (15/2, 5/2)7 o state at 11888 cm−1 and the 4f11(4Io 13/2)5d3/26s2 (13/2, 5/2)7o state at 15847 cm−1, showing values of 20±4 µs and 5.6±1.4 µs, respectively. We also present a calculated value of 13±7 s−1 for the transition rate from the 4f11(4Io 15/2)5d3/26s2 (15/2, 3/2)7 o state at 7697 cm-1 to the ground state, based on scaled Hartree-Fock energy parameters. Laser cooling on these transitions in combination with a strong, fast (5.8 ns) laser cooling transition at 401 nm, suggest new opportunities for narrowband laser cooling of a large-magnetic moment atom, with possible applications in quantum information processing, high-precision atomic clocks, quantum degenerate gases, and deterministic single-atom doping of materials.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. Y. Chen, Y. M. Li, K. Bailey, T. P. O'Connor, L. Young, and Z.-T. Lu, �??Ultrasensitive isotope trace analyses with a magneto-optical trap,�?? Science 286, 1139-1141 (1999).
    [CrossRef] [PubMed]
  2. J. Helmcke, G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, H. Schnatz, and F. Riehle, �??Optical frequency standard based on cold Ca atoms,�?? IEEE Trans. Instr. Meas., 52, 250-254 (2003).
    [CrossRef]
  3. J. R. Anglin and W. Ketterle, �??Bose-Einstein condensation of atomic gases,�?? Nature 416, 211-218 (2002).
    [CrossRef] [PubMed]
  4. C. Monroe, �??Quantum information processing with atoms and photons,�?? Nature 416, 238-246 (2002).
    [CrossRef] [PubMed]
  5. J. J. McClelland, �??Nanofabrication via Atom Optics,�?? in Handbook of Nanostructured Materials and Nanotechnology, ed. by H. S. Nalwa, vol. I, (Academic Press, San Diego, CA, 2000), p. 335-385. D. Meschede and H. Metcalf, �??Atomic nanofabrication: atomic deposition and lithography by laser and magnetic forces,�?? J. Phys. D �?? Appl. Phys. 36, R17-R38 (2003).
    [CrossRef]
  6. W. R. Anderson, C. C. Bradley, J. J. McClelland, and R. J. Celotta, �??Minimizing feature width in atomoptically fabricated chromium nanostructures,�?? Phys. Rev. A 59, 2476-2485 (1999).
    [CrossRef]
  7. M. Baranov, L. Dobrek, K. Góral, L. Santos, and M. Lewenstein, �??Ultracold dipolar gases �?? a challenge for experiment and theory,�?? Physica Scripta, T102, 74-81 (2002).
    [CrossRef]
  8. A. Derevianko and C. C. Cannon, �??Quantum computing with magnetically interacting atoms,�?? Phys. Rev. A 70, 062319-1 �?? 062319-6 (2004).
    [CrossRef]
  9. Courtillot, A. Quessada, R. P. Kovacich, A. Brusch, D. Kolker, J-J. Zondy , G. D. Rovera, and P. Lemonde, �??Clock transition for a future optical frequency standard with trapped atoms,�?? Phys. Rev. A 68, 030501-1 �??030501-4 (2003).
    [CrossRef]
  10. S. B. Hill and J. J. McClelland, �??Atoms on demand: fast, deterministic production of single Cr atoms,�?? Appl. Phys. Lett. 82, 3128-3130 (2003).
    [CrossRef]
  11. T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstäubler, E.M. Rasel, and W. Ertmer, �??Doppler Cooling and Trapping on Forbidden Transitions,�?? Phys. Rev. Lett. 87, 123002-1 �?? 123002-4 (2001).
    [CrossRef]
  12. E. A. Curtis, C. W. Oates, and L. Hollberg, �??Quenched narrow-line second- and third-stage laser cooling of 40Ca,�?? J. Opt. Soc. Am B 20, 977-984 (2003).
    [CrossRef]
  13. U. Sterr, T. Binneweis, C. Degenhardt, G. Wilpers, J. Helmke, and F. Riehle, �??Prospects of Doppler cooling on forbidden lines,�?? J. Opt. Soc. Am B 20, 985-983 (2003).
    [CrossRef]
  14. H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, �??Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,�?? Phys. Rev. Lett. 82, 1116-1119 (1999).
    [CrossRef]
  15. I. Courtillot, A. Quessada, R. P. Kovacich, J-J. Zondy, A. Landragin, A. Clairon, ans P. Lemonde, �??Efficient cooling and trapping of strontium atoms,�?? Opt. Lett. 28, 468-470 (2003).
    [CrossRef] [PubMed]
  16. S. B. Nagel, C. E. Simien, S. Laha, P. Gupta, V. S. Ashoka, and T. C. Killian, �??Magnetic trapping of metastable 3P2 atomic strontium,�?? Phys. Rev. A 67, 011401-1 �?? 011401-4 (2003).
    [CrossRef]
  17. X. Xu, T. H. Loftus, J. L. Hall, A. Gallagher, and J. Ye, �??Cooling and trapping of atomic strontium,�?? J. Opt. Soc. Am. B 20, 968-976 (2003).
    [CrossRef]
  18. T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, �??Magneto-optical trapping of Yb atoms using and intercombination line,�?? Phys. Rev. A 60, R745-R748 (1999).
    [CrossRef]
  19. R. Maruyana, R. H. Wynar, M. V. Romalis, A. Andalkar, M. D. Swallows, C. E. Pearson, and E. N. Forston, �??Investigation of sub-Doppler cooling in an ytterbium magneto-optical trap,�?? Phys. Rev. A 68, 011403-1 �?? 011403-4 (2003).
  20. W. C. Martin, R. Zalubas, and L. Hagan, �??Atomic energy levels �?? the rare earth elements,�?? NSRDS-NBS 60 (1978).
  21. N. Spector, �??4f12(3H6)6s6p levels of neutral erbium (Er I)�??, J. Opt. Soc. Am. 57, 308-311 (1967).
    [CrossRef]
  22. H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping, (Springer, New York, 1999).
    [CrossRef]
  23. J. E. Sansonetti and W. C. Martin, �??Handbook of basic atomic spectroscopic data,�?? <a href="http://physics.nist.gov/PhysRefData/Handbook/Tables/erbiumtable3.htm">http://physics.nist.gov/PhysRefData/Handbook/Tables/erbiumtable3.htm</a>
  24. Unless otherwise noted, all uncertainty estimates in this paper are intended to be interpreted as one-standard deviation combined standard uncertainty.
  25. R. J. Lipert and S. C. Lee, �??Isotope shifts and hyperfine structure of erbium, dysprosium, and gadolinium by atomic-beam diode laser spectroscopy,�?? Appl. Phys. B 57, 373-379 (1993)
    [CrossRef]
  26. For the 841 nm line the �??on�?? time was 200 µs and the �??off�?? time was 150 µs. For the 631 nm line these values were both 100 µs
  27. J. J. McClelland, �??Optical state preparation of atoms,�?? in Atomic, Molecular, and Optical Physics: Atoms and Molecules, ed. by F. B. Dunning and R. G. Hulet (Academic Press, San Diego, CA, 1995), pp. 145-170
  28. R. D. Cowan, The theory of atomic structure and spectra, (University of California Press, Berkeley, CA, 1981), and Cowan programs RCN, RCN2, and RCG.

,??? NSRDS-NBS (1)

W. C. Martin, R. Zalubas, and L. Hagan, �??Atomic energy levels �?? the rare earth elements,�?? NSRDS-NBS 60 (1978).

Appl. Phys. B (1)

R. J. Lipert and S. C. Lee, �??Isotope shifts and hyperfine structure of erbium, dysprosium, and gadolinium by atomic-beam diode laser spectroscopy,�?? Appl. Phys. B 57, 373-379 (1993)
[CrossRef]

Appl. Phys. Lett. (1)

S. B. Hill and J. J. McClelland, �??Atoms on demand: fast, deterministic production of single Cr atoms,�?? Appl. Phys. Lett. 82, 3128-3130 (2003).
[CrossRef]

Atomic, Molecular, and Optical Physics: (1)

J. J. McClelland, �??Optical state preparation of atoms,�?? in Atomic, Molecular, and Optical Physics: Atoms and Molecules, ed. by F. B. Dunning and R. G. Hulet (Academic Press, San Diego, CA, 1995), pp. 145-170

IEEE Trans. Instr. Meas. (1)

J. Helmcke, G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, H. Schnatz, and F. Riehle, �??Optical frequency standard based on cold Ca atoms,�?? IEEE Trans. Instr. Meas., 52, 250-254 (2003).
[CrossRef]

J. Opt. Soc. Am B (2)

E. A. Curtis, C. W. Oates, and L. Hollberg, �??Quenched narrow-line second- and third-stage laser cooling of 40Ca,�?? J. Opt. Soc. Am B 20, 977-984 (2003).
[CrossRef]

U. Sterr, T. Binneweis, C. Degenhardt, G. Wilpers, J. Helmke, and F. Riehle, �??Prospects of Doppler cooling on forbidden lines,�?? J. Opt. Soc. Am B 20, 985-983 (2003).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Nanostructured Materials and Nanotechnol (1)

J. J. McClelland, �??Nanofabrication via Atom Optics,�?? in Handbook of Nanostructured Materials and Nanotechnology, ed. by H. S. Nalwa, vol. I, (Academic Press, San Diego, CA, 2000), p. 335-385. D. Meschede and H. Metcalf, �??Atomic nanofabrication: atomic deposition and lithography by laser and magnetic forces,�?? J. Phys. D �?? Appl. Phys. 36, R17-R38 (2003).
[CrossRef]

Nature (2)

J. R. Anglin and W. Ketterle, �??Bose-Einstein condensation of atomic gases,�?? Nature 416, 211-218 (2002).
[CrossRef] [PubMed]

C. Monroe, �??Quantum information processing with atoms and photons,�?? Nature 416, 238-246 (2002).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. A (6)

S. B. Nagel, C. E. Simien, S. Laha, P. Gupta, V. S. Ashoka, and T. C. Killian, �??Magnetic trapping of metastable 3P2 atomic strontium,�?? Phys. Rev. A 67, 011401-1 �?? 011401-4 (2003).
[CrossRef]

W. R. Anderson, C. C. Bradley, J. J. McClelland, and R. J. Celotta, �??Minimizing feature width in atomoptically fabricated chromium nanostructures,�?? Phys. Rev. A 59, 2476-2485 (1999).
[CrossRef]

A. Derevianko and C. C. Cannon, �??Quantum computing with magnetically interacting atoms,�?? Phys. Rev. A 70, 062319-1 �?? 062319-6 (2004).
[CrossRef]

Courtillot, A. Quessada, R. P. Kovacich, A. Brusch, D. Kolker, J-J. Zondy , G. D. Rovera, and P. Lemonde, �??Clock transition for a future optical frequency standard with trapped atoms,�?? Phys. Rev. A 68, 030501-1 �??030501-4 (2003).
[CrossRef]

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, �??Magneto-optical trapping of Yb atoms using and intercombination line,�?? Phys. Rev. A 60, R745-R748 (1999).
[CrossRef]

R. Maruyana, R. H. Wynar, M. V. Romalis, A. Andalkar, M. D. Swallows, C. E. Pearson, and E. N. Forston, �??Investigation of sub-Doppler cooling in an ytterbium magneto-optical trap,�?? Phys. Rev. A 68, 011403-1 �?? 011403-4 (2003).

Phys. Rev. Lett. (2)

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstäubler, E.M. Rasel, and W. Ertmer, �??Doppler Cooling and Trapping on Forbidden Transitions,�?? Phys. Rev. Lett. 87, 123002-1 �?? 123002-4 (2001).
[CrossRef]

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, �??Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,�?? Phys. Rev. Lett. 82, 1116-1119 (1999).
[CrossRef]

Physica Scripta (1)

M. Baranov, L. Dobrek, K. Góral, L. Santos, and M. Lewenstein, �??Ultracold dipolar gases �?? a challenge for experiment and theory,�?? Physica Scripta, T102, 74-81 (2002).
[CrossRef]

Science (1)

C. Y. Chen, Y. M. Li, K. Bailey, T. P. O'Connor, L. Young, and Z.-T. Lu, �??Ultrasensitive isotope trace analyses with a magneto-optical trap,�?? Science 286, 1139-1141 (1999).
[CrossRef] [PubMed]

Other (5)

R. D. Cowan, The theory of atomic structure and spectra, (University of California Press, Berkeley, CA, 1981), and Cowan programs RCN, RCN2, and RCG.

For the 841 nm line the �??on�?? time was 200 µs and the �??off�?? time was 150 µs. For the 631 nm line these values were both 100 µs

H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping, (Springer, New York, 1999).
[CrossRef]

J. E. Sansonetti and W. C. Martin, �??Handbook of basic atomic spectroscopic data,�?? <a href="http://physics.nist.gov/PhysRefData/Handbook/Tables/erbiumtable3.htm">http://physics.nist.gov/PhysRefData/Handbook/Tables/erbiumtable3.htm</a>

Unless otherwise noted, all uncertainty estimates in this paper are intended to be interpreted as one-standard deviation combined standard uncertainty.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Energy levels of erbium, showing five laser cooling transitions. Red horizontal lines indicate even parity states and black horizontal lines indicate odd parity states.

Fig. 2.
Fig. 2.

Schematic of the crossed-beam experimental arrangement.

Fig. 3.
Fig. 3.

Measured fluorescence spectra for (a) the 631 nm line and (b) the 841 nm line, showing the isotopes 166Er, 168Er and 170Er, and the hyperfine structure (HFS) for 167Er.

Fig. 4.
Fig. 4.

841 nm fluorescence decay at three detector positions relative to the laser-atom beam intersection. (a) 0 mm, (b) 7.5 mm, and (c) 20 mm. Black dots indicate measurements, and red line indicates model used to extract lifetime. Extracted lifetime is 20±4 µs.

Fig. 5.
Fig. 5.

631 nm fluorescence decay at three detector positions relative to the laser-atom beam intersection. (a) 0 mm, (b) 2.5 mm, (c) 5 mm, and (d) 7.5 mm. Black dots indicate measurements, and red line indicates model used to extract lifetime. Extracted lifetime is 5.6±1.4 µs.

Tables (1)

Tables Icon

Table 1. Laser cooling parameters for five transitions in Er.

Metrics