Abstract

We report a single-frequency fiber laser with 1W output power at 1.5µm which is to our knowledge, five times the highest power from a single-frequency fiber laser reported to-date. The short unidirectional ring cavity approach is used to eliminate the spatial gain hole-burning associated with the standing-wave laser designs. A heavily-doped phosphate fiber inside the ring resonator serves as the active medium of the laser. Up to 700mW of output power, the longitudinal mode hops have been completely eliminated by using the adjustable coupled-cavity approach. At higher power levels, the laser still oscillates at a single longitudinal mode, but with infrequent mode hops that occur at a rate of few hops per minute. Compared to the Watt-level single-frequency amplified sources, our approach is simpler and offers better noise performance.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, �??83-W Single-Frequancy Narrow-Linewidth MOPA Using Large-Core Erbium-Ytterbium Co-Doped Fiber,�?? IEEE Photon. Technol. Lett. 16, 1825�??1827 (2004).
    [CrossRef]
  2. S. Alam, K. Yla-Jarkko, C. Chryssou, A. Grudinin, �??High Power, Single Frequency DFB Fibre Laser with Low Relative Intensity Noise,�?? ECOC�??03, Rimini, Italy, 2003, Paper We6.2.1.
  3. Ch. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Juang, and N. Peyghambarian, �??Low-Noise Narrow-Linewidth Fiber Laser at 1550 nm,�?? J. Lightwave Technol. 22, 57�??62 (2004).
  4. K. Iwatsuki, H. Okamura, M. Saruwatari, �??Wavelength-tunable single-frequency and single-polarization Er-doped fibre ring-laser with 1.4kHz linewidth,�?? Electr. Lett. 26, 2033�??2034 (1990).
    [CrossRef]
  5. C. V. Poulsen, M. Sejka, �??Highly Optimized Tunable Er^+3-Doped Single Longitudinal Mode Fiber Ring Laser, Experiment and Model,�?? IEEE Photon. Technol. Lett. 5, 646�??648 (1993).
    [CrossRef]
  6. A. Gloag, N. Langford, K. McCallion, W. Johnstone, �??Continuously tunable single-frequency erbium ring fiber laser,�?? J. Opt. Soc. Am. B 13, 921�??925 (1996).
    [CrossRef]
  7. S. K. Kim, G. Stewart, W. Johnstone, B. Culshaw, �??Mode-hop-free single-longitudinal-mode erbium-doped fiber laser frequency scanned with a fiber ring resonator,�?? Appl. Opt. 38, 5154�??5157 (1999).
    [CrossRef]
  8. M. Matsuura, N. Kishi, �??Frequency Control Characteristics of a Single-Frequency Fiber Laser with an External Light Injection,�?? IEEE J. Sel. Top. Quantum Electron. 7, 55�??58 (2001).
    [CrossRef]
  9. P. Polynkin, V.Temyanko, M. Mansuripur, N. Peyghambarian, �??Efficient and Scalable Side Pumping Scheme for Short High-Power Optical Fiber Lasers and Amplifiers,�?? IEEE Photon. Technol. Lett. 16, 2024�??2026 (2004).
    [CrossRef]
  10. T. Qiu, L. Li, A. Schülzgen, V. Temyanko, T. Luo, S. Jiang, A. Mafi, J. Moloney, N. Peyghambarian, �??Generation of 6.6W Multimode and 4W Singlemode Output from 7cm Short Fiber Lasers,�?? IEEE Photon. Technol. Lett. 16, 2592�??2594 (2004).
    [CrossRef]
  11. A. Grudinin, J. Nilsson, P. Turner, C. Renaud, W. Clarkson, D. Payne, �??Single Clad Coiled Optical Fibre for High Power Lasers and Amplifiers,�?? in Proc. CLEO 1999, Baltimore, Maryland, May 23�??28, 1999, postdeadline paper CPD26-1.
  12. S. Chernikov, J. Taylor, R. Kashyap, �??Coupled-cavity erbium fiber lasers incorporating fiber grating reflectors,�?? Opt. Lett. 18, 2023�??2025 (1993).
    [CrossRef] [PubMed]
  13. Y. Takushima, S. Yamashita, K. Kikuchi, and K. Hotate, �??Polarization-Stable and Single-Frequency Fiber Lasers,�?? J. Lightwave Technol. 16, 661�??669 (1998).
    [CrossRef]
  14. J. J. Zayhowski, �??Limits inposed by spatial hole burning on the single-mode operation of standing-wave laser cavities,�?? Opt. Lett. 15, 431�??433 (1990).

Appl. Opt. (1)

CLEO 1999 (1)

A. Grudinin, J. Nilsson, P. Turner, C. Renaud, W. Clarkson, D. Payne, �??Single Clad Coiled Optical Fibre for High Power Lasers and Amplifiers,�?? in Proc. CLEO 1999, Baltimore, Maryland, May 23�??28, 1999, postdeadline paper CPD26-1.

ECOC 2003 (1)

S. Alam, K. Yla-Jarkko, C. Chryssou, A. Grudinin, �??High Power, Single Frequency DFB Fibre Laser with Low Relative Intensity Noise,�?? ECOC�??03, Rimini, Italy, 2003, Paper We6.2.1.

EEE Photon. Technol. Lett. (1)

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, �??83-W Single-Frequancy Narrow-Linewidth MOPA Using Large-Core Erbium-Ytterbium Co-Doped Fiber,�?? IEEE Photon. Technol. Lett. 16, 1825�??1827 (2004).
[CrossRef]

Electr. Lett. (1)

K. Iwatsuki, H. Okamura, M. Saruwatari, �??Wavelength-tunable single-frequency and single-polarization Er-doped fibre ring-laser with 1.4kHz linewidth,�?? Electr. Lett. 26, 2033�??2034 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Matsuura, N. Kishi, �??Frequency Control Characteristics of a Single-Frequency Fiber Laser with an External Light Injection,�?? IEEE J. Sel. Top. Quantum Electron. 7, 55�??58 (2001).
[CrossRef]

IEEE Photon. Technol. (1)

C. V. Poulsen, M. Sejka, �??Highly Optimized Tunable Er^+3-Doped Single Longitudinal Mode Fiber Ring Laser, Experiment and Model,�?? IEEE Photon. Technol. Lett. 5, 646�??648 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

P. Polynkin, V.Temyanko, M. Mansuripur, N. Peyghambarian, �??Efficient and Scalable Side Pumping Scheme for Short High-Power Optical Fiber Lasers and Amplifiers,�?? IEEE Photon. Technol. Lett. 16, 2024�??2026 (2004).
[CrossRef]

T. Qiu, L. Li, A. Schülzgen, V. Temyanko, T. Luo, S. Jiang, A. Mafi, J. Moloney, N. Peyghambarian, �??Generation of 6.6W Multimode and 4W Singlemode Output from 7cm Short Fiber Lasers,�?? IEEE Photon. Technol. Lett. 16, 2592�??2594 (2004).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

J. J. Zayhowski, �??Limits inposed by spatial hole burning on the single-mode operation of standing-wave laser cavities,�?? Opt. Lett. 15, 431�??433 (1990).

S. Chernikov, J. Taylor, R. Kashyap, �??Coupled-cavity erbium fiber lasers incorporating fiber grating reflectors,�?? Opt. Lett. 18, 2023�??2025 (1993).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Diagram of the short-cavity fiber ring laser.

Fig. 2.
Fig. 2.

Operation of the sub-cavity filter. The graph shows a calculated reflection coefficient from the filter as a function of optical frequency, for three different cases: Reflection from the FBG1 alone (1); Reflection from the two gratings with total sub-cavity length L 1⋍5 cm (2); Reflection from the two gratings with the sub-cavity length L 2=L 1+0.27µm (3). (The increment equals to one quarter of the wavelength of the laser light in the fiber.) Vertical arrows mark the locations of the main cavity modes.

Fig. 3.
Fig. 3.

Output power at 1.5µm vs. total pump power at 975 nm. The inset shows the laser emission spectrum measured with an OSA. The suppression of the ASE-noise background is better than 60 dB.

Fig. 4.
Fig. 4.

RF-spectrum of the beat signal between the ring laser and a single-frequency tunable diode laser (a). A separate ring laser made without the polarizing fiber in the laser cavity shows a dual-frequency operation corresponding to simultaneous oscillation of the two polarization components of the same longitudinal mode (b).

Metrics