Abstract

We experimentally demonstrate the use of our fabricated 1-mlong Bi2O3 optical fiber (Bi-NLF) with an ultra-high nonlinearity of ~1100 W-1km-1 for wavelength conversion of OTDM signals. With successfully-performed fusion splicing of the Bi-NLF to conventional silica fibers an all-fiber wavelength converter is readily implemented by use of a conventional Kerr shutter configuration. Owing to the extremely short fiber length, no additional scheme was employed for suppression of signal polarization fluctuation induced by local birefringence fluctuation, which is usually observed in a long-fiber Kerr shutter. The wavelength converter, composed of the 1-m Bi-NLF readily achieves error-free wavelength conversion of an 80-Gbit/s input signal

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. R. Rau, W. Wang, S. Camatel, H. Poulsen, and D. J. Blumenthal, “All-optical 160-Gb/s phase reconstructing wavelength conversion using cross-phase modulation (XPM) in dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 16, 2520–2522 (2004).
    [Crossref]
  2. A. Suzuki, X. Wang, Y. Ogawa, and S. Nakamura, “10×320 Gb/s (3.2 Tb/s) DWDM/OTDM transmission in C-band by semiconductor-based devices,” in Proc. European Conference on Optical Communication (ECOC 2004), Stockholm Sweden, Th4.1.7 (2004).
  3. A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie, and R. Kashap, “Error free 100 Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier,” Electron. Lett. 34, 1958–1959 (1998).
    [Crossref]
  4. K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4, 69–72 (1992).
    [Crossref]
  5. Y. Jianjun, Q. Yujun, P. Jeppesen, and S. N. Knudsen, “Broad-band and pulsewidth-maintained wavelength conversion based on a high-nonlinearity DSF nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 13, 344–346 (2001).
    [Crossref]
  6. T. Okuno, M. Tanaka, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, “Highly nonlinear and perfectly dispersion-flattened fibers for quasi-tunable wavelength conversion,” in Proc. European Conference on Optical Communication (ECOC 2003), Rimini Italy, 3, 614–615 (2003).
  7. J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Fourwave mixing based, 10Gbit/s tuneable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
    [Crossref]
  8. N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1.km-1,” in Proc. Optical Fiber Communications Conference (OFC’2004), Paper PDP26 (2004).
  9. J. H. Lee, T. Tanemura, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical-time division demultiplexing based on polarization rotation and wavelength shift induced by cross-phase modulation,” Opt. Lett.30, No.11 (2005).
    [PubMed]
  10. T. Morioka, H. Takara, K. Mori, and M. Saruwatari, “Ultrafast reflective optical Kerr demultiplexer using polarization rotation mirror,” Electron. Lett. 28, 521–522 (1992).
    [Crossref]
  11. S. Watanabe, R. Okabe, F. Futami, R. Hainberger, C. Schumidt-Langhorst, C. Schubert, and H. G. Weber, “Novel fiber Kerr-switch with parametric gain: demonstration of optical demultiplexing and sampling up to 640 Gb/s,” in Proc. European Conference on Optical Communication (ECOC 2004), Stockholm Sweden, Postdeadline paper Th4.1.6 (2004).
  12. J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, “A tuneable WDM wavelength converter based on cross phase modulation effects in holey fiber,” IEEE Photon. Technol. Lett. 15, 437–439 (2003).
    [Crossref]
  13. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 µm,” Optics Lett. 21, 1966–1968 (1996).
    [Crossref]
  14. G. P. Agrawal, Nonlinear fiber optics (Academic Press, 2001), 210–216.
  15. G.-W. Lu, L.-K. Chen, C.-K. Chan, and C. Lin, “All-optical tunable wavelength conversion based on cross-polarisation modulation in nonlinear photonic crystal fibre,” Electron. Lett. 41, 55–56 (2005).
    [Crossref]

2005 (1)

G.-W. Lu, L.-K. Chen, C.-K. Chan, and C. Lin, “All-optical tunable wavelength conversion based on cross-polarisation modulation in nonlinear photonic crystal fibre,” Electron. Lett. 41, 55–56 (2005).
[Crossref]

2004 (2)

L. R. Rau, W. Wang, S. Camatel, H. Poulsen, and D. J. Blumenthal, “All-optical 160-Gb/s phase reconstructing wavelength conversion using cross-phase modulation (XPM) in dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 16, 2520–2522 (2004).
[Crossref]

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1.km-1,” in Proc. Optical Fiber Communications Conference (OFC’2004), Paper PDP26 (2004).

2003 (2)

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, “A tuneable WDM wavelength converter based on cross phase modulation effects in holey fiber,” IEEE Photon. Technol. Lett. 15, 437–439 (2003).
[Crossref]

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Fourwave mixing based, 10Gbit/s tuneable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

2001 (1)

Y. Jianjun, Q. Yujun, P. Jeppesen, and S. N. Knudsen, “Broad-band and pulsewidth-maintained wavelength conversion based on a high-nonlinearity DSF nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 13, 344–346 (2001).
[Crossref]

1998 (1)

A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie, and R. Kashap, “Error free 100 Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier,” Electron. Lett. 34, 1958–1959 (1998).
[Crossref]

1996 (1)

A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 µm,” Optics Lett. 21, 1966–1968 (1996).
[Crossref]

1992 (2)

T. Morioka, H. Takara, K. Mori, and M. Saruwatari, “Ultrafast reflective optical Kerr demultiplexer using polarization rotation mirror,” Electron. Lett. 28, 521–522 (1992).
[Crossref]

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4, 69–72 (1992).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear fiber optics (Academic Press, 2001), 210–216.

Belardi, W.

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, “A tuneable WDM wavelength converter based on cross phase modulation effects in holey fiber,” IEEE Photon. Technol. Lett. 15, 437–439 (2003).
[Crossref]

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Fourwave mixing based, 10Gbit/s tuneable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

Blumenthal, D. J.

L. R. Rau, W. Wang, S. Camatel, H. Poulsen, and D. J. Blumenthal, “All-optical 160-Gb/s phase reconstructing wavelength conversion using cross-phase modulation (XPM) in dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 16, 2520–2522 (2004).
[Crossref]

Boskovic, A.

A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 µm,” Optics Lett. 21, 1966–1968 (1996).
[Crossref]

Camatel, S.

L. R. Rau, W. Wang, S. Camatel, H. Poulsen, and D. J. Blumenthal, “All-optical 160-Gb/s phase reconstructing wavelength conversion using cross-phase modulation (XPM) in dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 16, 2520–2522 (2004).
[Crossref]

Chan, C.-K.

G.-W. Lu, L.-K. Chen, C.-K. Chan, and C. Lin, “All-optical tunable wavelength conversion based on cross-polarisation modulation in nonlinear photonic crystal fibre,” Electron. Lett. 41, 55–56 (2005).
[Crossref]

Chen, L.-K.

G.-W. Lu, L.-K. Chen, C.-K. Chan, and C. Lin, “All-optical tunable wavelength conversion based on cross-polarisation modulation in nonlinear photonic crystal fibre,” Electron. Lett. 41, 55–56 (2005).
[Crossref]

Chernikov, S. V.

A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 µm,” Optics Lett. 21, 1966–1968 (1996).
[Crossref]

Ellis, A. D.

A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie, and R. Kashap, “Error free 100 Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier,” Electron. Lett. 34, 1958–1959 (1998).
[Crossref]

Furusawa, K.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Fourwave mixing based, 10Gbit/s tuneable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

Futami, F.

S. Watanabe, R. Okabe, F. Futami, R. Hainberger, C. Schumidt-Langhorst, C. Schubert, and H. G. Weber, “Novel fiber Kerr-switch with parametric gain: demonstration of optical demultiplexing and sampling up to 640 Gb/s,” in Proc. European Conference on Optical Communication (ECOC 2004), Stockholm Sweden, Postdeadline paper Th4.1.6 (2004).

Gruner-Nielsen, L.

A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 µm,” Optics Lett. 21, 1966–1968 (1996).
[Crossref]

Hainberger, R.

S. Watanabe, R. Okabe, F. Futami, R. Hainberger, C. Schumidt-Langhorst, C. Schubert, and H. G. Weber, “Novel fiber Kerr-switch with parametric gain: demonstration of optical demultiplexing and sampling up to 640 Gb/s,” in Proc. European Conference on Optical Communication (ECOC 2004), Stockholm Sweden, Postdeadline paper Th4.1.6 (2004).

Hasegawa, T.

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1.km-1,” in Proc. Optical Fiber Communications Conference (OFC’2004), Paper PDP26 (2004).

J. H. Lee, T. Tanemura, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical-time division demultiplexing based on polarization rotation and wavelength shift induced by cross-phase modulation,” Opt. Lett.30, No.11 (2005).
[PubMed]

Hirano, M.

T. Okuno, M. Tanaka, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, “Highly nonlinear and perfectly dispersion-flattened fibers for quasi-tunable wavelength conversion,” in Proc. European Conference on Optical Communication (ECOC 2003), Rimini Italy, 3, 614–615 (2003).

Ibsen, M.

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, “A tuneable WDM wavelength converter based on cross phase modulation effects in holey fiber,” IEEE Photon. Technol. Lett. 15, 437–439 (2003).
[Crossref]

Inoue, K.

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4, 69–72 (1992).
[Crossref]

Jeppesen, P.

Y. Jianjun, Q. Yujun, P. Jeppesen, and S. N. Knudsen, “Broad-band and pulsewidth-maintained wavelength conversion based on a high-nonlinearity DSF nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 13, 344–346 (2001).
[Crossref]

Jianjun, Y.

Y. Jianjun, Q. Yujun, P. Jeppesen, and S. N. Knudsen, “Broad-band and pulsewidth-maintained wavelength conversion based on a high-nonlinearity DSF nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 13, 344–346 (2001).
[Crossref]

Kashap, R.

A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie, and R. Kashap, “Error free 100 Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier,” Electron. Lett. 34, 1958–1959 (1998).
[Crossref]

Kato, T.

T. Okuno, M. Tanaka, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, “Highly nonlinear and perfectly dispersion-flattened fibers for quasi-tunable wavelength conversion,” in Proc. European Conference on Optical Communication (ECOC 2003), Rimini Italy, 3, 614–615 (2003).

Kelly, A. E.

A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie, and R. Kashap, “Error free 100 Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier,” Electron. Lett. 34, 1958–1959 (1998).
[Crossref]

Kikuchi, K.

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1.km-1,” in Proc. Optical Fiber Communications Conference (OFC’2004), Paper PDP26 (2004).

J. H. Lee, T. Tanemura, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical-time division demultiplexing based on polarization rotation and wavelength shift induced by cross-phase modulation,” Opt. Lett.30, No.11 (2005).
[PubMed]

Knudsen, S. N.

Y. Jianjun, Q. Yujun, P. Jeppesen, and S. N. Knudsen, “Broad-band and pulsewidth-maintained wavelength conversion based on a high-nonlinearity DSF nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 13, 344–346 (2001).
[Crossref]

Lee, J. H.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Fourwave mixing based, 10Gbit/s tuneable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, “A tuneable WDM wavelength converter based on cross phase modulation effects in holey fiber,” IEEE Photon. Technol. Lett. 15, 437–439 (2003).
[Crossref]

J. H. Lee, T. Tanemura, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical-time division demultiplexing based on polarization rotation and wavelength shift induced by cross-phase modulation,” Opt. Lett.30, No.11 (2005).
[PubMed]

Levring, O. A.

A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 µm,” Optics Lett. 21, 1966–1968 (1996).
[Crossref]

Lin, C.

G.-W. Lu, L.-K. Chen, C.-K. Chan, and C. Lin, “All-optical tunable wavelength conversion based on cross-polarisation modulation in nonlinear photonic crystal fibre,” Electron. Lett. 41, 55–56 (2005).
[Crossref]

Lu, G.-W.

G.-W. Lu, L.-K. Chen, C.-K. Chan, and C. Lin, “All-optical tunable wavelength conversion based on cross-polarisation modulation in nonlinear photonic crystal fibre,” Electron. Lett. 41, 55–56 (2005).
[Crossref]

Monro, T. M.

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, “A tuneable WDM wavelength converter based on cross phase modulation effects in holey fiber,” IEEE Photon. Technol. Lett. 15, 437–439 (2003).
[Crossref]

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Fourwave mixing based, 10Gbit/s tuneable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

Moodie, D. G.

A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie, and R. Kashap, “Error free 100 Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier,” Electron. Lett. 34, 1958–1959 (1998).
[Crossref]

Mori, K.

T. Morioka, H. Takara, K. Mori, and M. Saruwatari, “Ultrafast reflective optical Kerr demultiplexer using polarization rotation mirror,” Electron. Lett. 28, 521–522 (1992).
[Crossref]

Morioka, T.

T. Morioka, H. Takara, K. Mori, and M. Saruwatari, “Ultrafast reflective optical Kerr demultiplexer using polarization rotation mirror,” Electron. Lett. 28, 521–522 (1992).
[Crossref]

Nagashima, T.

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1.km-1,” in Proc. Optical Fiber Communications Conference (OFC’2004), Paper PDP26 (2004).

J. H. Lee, T. Tanemura, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical-time division demultiplexing based on polarization rotation and wavelength shift induced by cross-phase modulation,” Opt. Lett.30, No.11 (2005).
[PubMed]

Nakamura, S.

A. Suzuki, X. Wang, Y. Ogawa, and S. Nakamura, “10×320 Gb/s (3.2 Tb/s) DWDM/OTDM transmission in C-band by semiconductor-based devices,” in Proc. European Conference on Optical Communication (ECOC 2004), Stockholm Sweden, Th4.1.7 (2004).

Nesset, D.

A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie, and R. Kashap, “Error free 100 Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier,” Electron. Lett. 34, 1958–1959 (1998).
[Crossref]

Ogawa, Y.

A. Suzuki, X. Wang, Y. Ogawa, and S. Nakamura, “10×320 Gb/s (3.2 Tb/s) DWDM/OTDM transmission in C-band by semiconductor-based devices,” in Proc. European Conference on Optical Communication (ECOC 2004), Stockholm Sweden, Th4.1.7 (2004).

Ohara, S.

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1.km-1,” in Proc. Optical Fiber Communications Conference (OFC’2004), Paper PDP26 (2004).

J. H. Lee, T. Tanemura, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical-time division demultiplexing based on polarization rotation and wavelength shift induced by cross-phase modulation,” Opt. Lett.30, No.11 (2005).
[PubMed]

Okabe, R.

S. Watanabe, R. Okabe, F. Futami, R. Hainberger, C. Schumidt-Langhorst, C. Schubert, and H. G. Weber, “Novel fiber Kerr-switch with parametric gain: demonstration of optical demultiplexing and sampling up to 640 Gb/s,” in Proc. European Conference on Optical Communication (ECOC 2004), Stockholm Sweden, Postdeadline paper Th4.1.6 (2004).

Okuno, T.

T. Okuno, M. Tanaka, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, “Highly nonlinear and perfectly dispersion-flattened fibers for quasi-tunable wavelength conversion,” in Proc. European Conference on Optical Communication (ECOC 2003), Rimini Italy, 3, 614–615 (2003).

Onishi, M.

T. Okuno, M. Tanaka, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, “Highly nonlinear and perfectly dispersion-flattened fibers for quasi-tunable wavelength conversion,” in Proc. European Conference on Optical Communication (ECOC 2003), Rimini Italy, 3, 614–615 (2003).

Petropoulos, P.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Fourwave mixing based, 10Gbit/s tuneable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

Pitcher, D.

A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie, and R. Kashap, “Error free 100 Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier,” Electron. Lett. 34, 1958–1959 (1998).
[Crossref]

Poulsen, H.

L. R. Rau, W. Wang, S. Camatel, H. Poulsen, and D. J. Blumenthal, “All-optical 160-Gb/s phase reconstructing wavelength conversion using cross-phase modulation (XPM) in dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 16, 2520–2522 (2004).
[Crossref]

Rau, L. R.

L. R. Rau, W. Wang, S. Camatel, H. Poulsen, and D. J. Blumenthal, “All-optical 160-Gb/s phase reconstructing wavelength conversion using cross-phase modulation (XPM) in dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 16, 2520–2522 (2004).
[Crossref]

Richardson, D. J.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Fourwave mixing based, 10Gbit/s tuneable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, “A tuneable WDM wavelength converter based on cross phase modulation effects in holey fiber,” IEEE Photon. Technol. Lett. 15, 437–439 (2003).
[Crossref]

Saruwatari, M.

T. Morioka, H. Takara, K. Mori, and M. Saruwatari, “Ultrafast reflective optical Kerr demultiplexer using polarization rotation mirror,” Electron. Lett. 28, 521–522 (1992).
[Crossref]

Schubert, C.

S. Watanabe, R. Okabe, F. Futami, R. Hainberger, C. Schumidt-Langhorst, C. Schubert, and H. G. Weber, “Novel fiber Kerr-switch with parametric gain: demonstration of optical demultiplexing and sampling up to 640 Gb/s,” in Proc. European Conference on Optical Communication (ECOC 2004), Stockholm Sweden, Postdeadline paper Th4.1.6 (2004).

Schumidt-Langhorst, C.

S. Watanabe, R. Okabe, F. Futami, R. Hainberger, C. Schumidt-Langhorst, C. Schubert, and H. G. Weber, “Novel fiber Kerr-switch with parametric gain: demonstration of optical demultiplexing and sampling up to 640 Gb/s,” in Proc. European Conference on Optical Communication (ECOC 2004), Stockholm Sweden, Postdeadline paper Th4.1.6 (2004).

Shigematsu, M.

T. Okuno, M. Tanaka, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, “Highly nonlinear and perfectly dispersion-flattened fibers for quasi-tunable wavelength conversion,” in Proc. European Conference on Optical Communication (ECOC 2003), Rimini Italy, 3, 614–615 (2003).

Sugimoto, N.

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1.km-1,” in Proc. Optical Fiber Communications Conference (OFC’2004), Paper PDP26 (2004).

J. H. Lee, T. Tanemura, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical-time division demultiplexing based on polarization rotation and wavelength shift induced by cross-phase modulation,” Opt. Lett.30, No.11 (2005).
[PubMed]

Suzuki, A.

A. Suzuki, X. Wang, Y. Ogawa, and S. Nakamura, “10×320 Gb/s (3.2 Tb/s) DWDM/OTDM transmission in C-band by semiconductor-based devices,” in Proc. European Conference on Optical Communication (ECOC 2004), Stockholm Sweden, Th4.1.7 (2004).

Taira, K.

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1.km-1,” in Proc. Optical Fiber Communications Conference (OFC’2004), Paper PDP26 (2004).

Takara, H.

T. Morioka, H. Takara, K. Mori, and M. Saruwatari, “Ultrafast reflective optical Kerr demultiplexer using polarization rotation mirror,” Electron. Lett. 28, 521–522 (1992).
[Crossref]

Tanaka, M.

T. Okuno, M. Tanaka, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, “Highly nonlinear and perfectly dispersion-flattened fibers for quasi-tunable wavelength conversion,” in Proc. European Conference on Optical Communication (ECOC 2003), Rimini Italy, 3, 614–615 (2003).

Tanemura, T.

J. H. Lee, T. Tanemura, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical-time division demultiplexing based on polarization rotation and wavelength shift induced by cross-phase modulation,” Opt. Lett.30, No.11 (2005).
[PubMed]

Taylor, J. R.

A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 µm,” Optics Lett. 21, 1966–1968 (1996).
[Crossref]

Toba, H.

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4, 69–72 (1992).
[Crossref]

Wang, W.

L. R. Rau, W. Wang, S. Camatel, H. Poulsen, and D. J. Blumenthal, “All-optical 160-Gb/s phase reconstructing wavelength conversion using cross-phase modulation (XPM) in dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 16, 2520–2522 (2004).
[Crossref]

Wang, X.

A. Suzuki, X. Wang, Y. Ogawa, and S. Nakamura, “10×320 Gb/s (3.2 Tb/s) DWDM/OTDM transmission in C-band by semiconductor-based devices,” in Proc. European Conference on Optical Communication (ECOC 2004), Stockholm Sweden, Th4.1.7 (2004).

Watanabe, S.

S. Watanabe, R. Okabe, F. Futami, R. Hainberger, C. Schumidt-Langhorst, C. Schubert, and H. G. Weber, “Novel fiber Kerr-switch with parametric gain: demonstration of optical demultiplexing and sampling up to 640 Gb/s,” in Proc. European Conference on Optical Communication (ECOC 2004), Stockholm Sweden, Postdeadline paper Th4.1.6 (2004).

Weber, H. G.

S. Watanabe, R. Okabe, F. Futami, R. Hainberger, C. Schumidt-Langhorst, C. Schubert, and H. G. Weber, “Novel fiber Kerr-switch with parametric gain: demonstration of optical demultiplexing and sampling up to 640 Gb/s,” in Proc. European Conference on Optical Communication (ECOC 2004), Stockholm Sweden, Postdeadline paper Th4.1.6 (2004).

Yujun, Q.

Y. Jianjun, Q. Yujun, P. Jeppesen, and S. N. Knudsen, “Broad-band and pulsewidth-maintained wavelength conversion based on a high-nonlinearity DSF nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 13, 344–346 (2001).
[Crossref]

Yusoff, Z.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Fourwave mixing based, 10Gbit/s tuneable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, “A tuneable WDM wavelength converter based on cross phase modulation effects in holey fiber,” IEEE Photon. Technol. Lett. 15, 437–439 (2003).
[Crossref]

Electron. Lett. (3)

A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie, and R. Kashap, “Error free 100 Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier,” Electron. Lett. 34, 1958–1959 (1998).
[Crossref]

T. Morioka, H. Takara, K. Mori, and M. Saruwatari, “Ultrafast reflective optical Kerr demultiplexer using polarization rotation mirror,” Electron. Lett. 28, 521–522 (1992).
[Crossref]

G.-W. Lu, L.-K. Chen, C.-K. Chan, and C. Lin, “All-optical tunable wavelength conversion based on cross-polarisation modulation in nonlinear photonic crystal fibre,” Electron. Lett. 41, 55–56 (2005).
[Crossref]

IEEE Photon. Technol. Lett. (5)

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, “A tuneable WDM wavelength converter based on cross phase modulation effects in holey fiber,” IEEE Photon. Technol. Lett. 15, 437–439 (2003).
[Crossref]

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4, 69–72 (1992).
[Crossref]

Y. Jianjun, Q. Yujun, P. Jeppesen, and S. N. Knudsen, “Broad-band and pulsewidth-maintained wavelength conversion based on a high-nonlinearity DSF nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 13, 344–346 (2001).
[Crossref]

L. R. Rau, W. Wang, S. Camatel, H. Poulsen, and D. J. Blumenthal, “All-optical 160-Gb/s phase reconstructing wavelength conversion using cross-phase modulation (XPM) in dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 16, 2520–2522 (2004).
[Crossref]

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Fourwave mixing based, 10Gbit/s tuneable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

Optics Lett. (1)

A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 µm,” Optics Lett. 21, 1966–1968 (1996).
[Crossref]

Other (6)

G. P. Agrawal, Nonlinear fiber optics (Academic Press, 2001), 210–216.

S. Watanabe, R. Okabe, F. Futami, R. Hainberger, C. Schumidt-Langhorst, C. Schubert, and H. G. Weber, “Novel fiber Kerr-switch with parametric gain: demonstration of optical demultiplexing and sampling up to 640 Gb/s,” in Proc. European Conference on Optical Communication (ECOC 2004), Stockholm Sweden, Postdeadline paper Th4.1.6 (2004).

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1.km-1,” in Proc. Optical Fiber Communications Conference (OFC’2004), Paper PDP26 (2004).

J. H. Lee, T. Tanemura, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical-time division demultiplexing based on polarization rotation and wavelength shift induced by cross-phase modulation,” Opt. Lett.30, No.11 (2005).
[PubMed]

A. Suzuki, X. Wang, Y. Ogawa, and S. Nakamura, “10×320 Gb/s (3.2 Tb/s) DWDM/OTDM transmission in C-band by semiconductor-based devices,” in Proc. European Conference on Optical Communication (ECOC 2004), Stockholm Sweden, Th4.1.7 (2004).

T. Okuno, M. Tanaka, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, “Highly nonlinear and perfectly dispersion-flattened fibers for quasi-tunable wavelength conversion,” in Proc. European Conference on Optical Communication (ECOC 2003), Rimini Italy, 3, 614–615 (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Measured optical spectrum for nonlinear four-wave mixing in the Bi-NLF fabricated. (b) Measured nonlinear phase shift versus input signal power (The dashed line is a linear fit).

Fig. 2.
Fig. 2.

Experimental setup for the 80-Gbit/s wavelength converter using a 1-m-long Bi-NLF.

Fig. 3.
Fig. 3.

Measured output optical spectrum after the polarizer together with that after the filter.

Fig. 4.
Fig. 4.

(a) Measured autocorrelation traces of the 1555-nm original data pulses and the 1545-nm wavelength-converted pulses. (b) Measured temporal width of the wavelength-converted pulses as a function of probe beam wavelength.

Fig. 5.
Fig. 5.

(a) Measured eye diagrams for the 80-Gbit/s input control and the 80-Gbit/s wavelength-converted signals together with those of the 10-Gbit/s back-to-back and the 10-Gbit/s demultiplexed signals (input pulses: 1555 nm, wavelength-converted pulses: 1545nm). (b) Measured BER’s for the 80-to-10-Gbit/s demultiplexed wavelength-converted signal and the 10-Gbit/s back-to-back signal.

Metrics