Abstract

We experimentally demonstrate the use of our fabricated 1-mlong Bi2O3 optical fiber (Bi-NLF) with an ultra-high nonlinearity of ~1100 W-1km-1 for wavelength conversion of OTDM signals. With successfully-performed fusion splicing of the Bi-NLF to conventional silica fibers an all-fiber wavelength converter is readily implemented by use of a conventional Kerr shutter configuration. Owing to the extremely short fiber length, no additional scheme was employed for suppression of signal polarization fluctuation induced by local birefringence fluctuation, which is usually observed in a long-fiber Kerr shutter. The wavelength converter, composed of the 1-m Bi-NLF readily achieves error-free wavelength conversion of an 80-Gbit/s input signal

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. R. Rau, W. Wang, S. Camatel, H. Poulsen, and D. J. Blumenthal, �??All-optical 160-Gb/s phase reconstructing wavelength conversion using cross-phase modulation (XPM) in dispersion-shifted fiber,�?? IEEE Photon. Technol. Lett. 16, 2520-2522 (2004).
    [CrossRef]
  2. A. Suzuki, X. Wang, Y. Ogawa, and S. Nakamura, �??10�?320 Gb/s (3.2 Tb/s) DWDM/OTDM transmission in C-band by semiconductor-based devices,�?? in Proc. European Conference on Optical Communication (ECOC 2004), Stockholm Sweden, Th4.1.7 (2004).
  3. A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie, and R. Kashap, �??Error free 100 Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier,�?? Electron. Lett. 34, 1958-1959 (1998).
    [CrossRef]
  4. K. Inoue, and H. Toba, �??Wavelength conversion experiment using fiber four-wave mixing,�?? IEEE Photon. Technol. Lett. 4, 69-72 (1992).
    [CrossRef]
  5. Y. Jianjun, Q. Yujun, P. Jeppesen, and S. N. Knudsen, �??Broad-band and pulsewidth-maintained wavelength conversion based on a high-nonlinearity DSF nonlinear optical loop mirror,�?? IEEE Photon. Technol. Lett. 13, 344-346 (2001).
    [CrossRef]
  6. T. Okuno, M. Tanaka, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, �??Highly nonlinear and perfectly dispersion-flattened fibers for quasi-tunable wavelength conversion,�?? in Proc. European Conference on Optical Communication (ECOC 2003), Rimini Italy, 3, 614-615 (2003).
  7. J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, �??Four-wave mixing based, 10Gbit/s tuneable wavelength conversion using a holey fiber with a high SBS threshold,�?? IEEE Photon. Technol. Lett. 15, 440-442 (2003).
    [CrossRef]
  8. N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, �??Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1.km-1,�?? in Proc. Optical Fiber Communications Conference (OFC 2004), Paper PDP26 (2004).
  9. J. H. Lee, T. Tanemura, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, �??Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical-time division demultiplexing based on polarization rotation and wavelength shift induced by cross-phase modulation,�?? Opt. Lett. 30, No.11 (2005).
    [PubMed]
  10. T. Morioka, H. Takara, K. Mori, and M. Saruwatari, �??Ultrafast reflective optical Kerr demultiplexer using polarization rotation mirror,�?? Electron. Lett. 28, 521-522 (1992).
    [CrossRef]
  11. S. Watanabe, R. Okabe, F. Futami, R. Hainberger, C. Schumidt-Langhorst, C. Schubert, and H. G. Weber, �??Novel fiber Kerr-switch with parametric gain: demonstration of optical demultiplexing and sampling up to 640 Gb/s,�?? in Proc. European Conference on Optical Communication (ECOC 2004), Stockholm Sweden, Postdeadline paper Th4.1.6 (2004).
  12. J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, �??A tuneable WDM wavelength converter based on cross phase modulation effects in holey fiber,�?? IEEE Photon. Technol. Lett. 15, 437-439 (2003).
    [CrossRef]
  13. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, �??Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 m,�?? Optics Lett. 21, 1966-1968 (1996).
    [CrossRef]
  14. G. P. Agrawal, Nonlinear fiber optics (Academic Press, 2001), 210-216.
  15. G.-W. Lu, L.-K. Chen, C.-K. Chan, and C. Lin, �??All-optical tunable wavelength conversion based on cross-polarisation modulation in nonlinear photonic crystal fibre,�?? Electron. Lett. 41, 55-56 (2005).
    [CrossRef]

ECOC 2003

T. Okuno, M. Tanaka, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, �??Highly nonlinear and perfectly dispersion-flattened fibers for quasi-tunable wavelength conversion,�?? in Proc. European Conference on Optical Communication (ECOC 2003), Rimini Italy, 3, 614-615 (2003).

ECOC 2004

A. Suzuki, X. Wang, Y. Ogawa, and S. Nakamura, �??10�?320 Gb/s (3.2 Tb/s) DWDM/OTDM transmission in C-band by semiconductor-based devices,�?? in Proc. European Conference on Optical Communication (ECOC 2004), Stockholm Sweden, Th4.1.7 (2004).

S. Watanabe, R. Okabe, F. Futami, R. Hainberger, C. Schumidt-Langhorst, C. Schubert, and H. G. Weber, �??Novel fiber Kerr-switch with parametric gain: demonstration of optical demultiplexing and sampling up to 640 Gb/s,�?? in Proc. European Conference on Optical Communication (ECOC 2004), Stockholm Sweden, Postdeadline paper Th4.1.6 (2004).

Electron. Lett.

T. Morioka, H. Takara, K. Mori, and M. Saruwatari, �??Ultrafast reflective optical Kerr demultiplexer using polarization rotation mirror,�?? Electron. Lett. 28, 521-522 (1992).
[CrossRef]

G.-W. Lu, L.-K. Chen, C.-K. Chan, and C. Lin, �??All-optical tunable wavelength conversion based on cross-polarisation modulation in nonlinear photonic crystal fibre,�?? Electron. Lett. 41, 55-56 (2005).
[CrossRef]

A. D. Ellis, A. E. Kelly, D. Nesset, D. Pitcher, D. G. Moodie, and R. Kashap, �??Error free 100 Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier,�?? Electron. Lett. 34, 1958-1959 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Inoue, and H. Toba, �??Wavelength conversion experiment using fiber four-wave mixing,�?? IEEE Photon. Technol. Lett. 4, 69-72 (1992).
[CrossRef]

Y. Jianjun, Q. Yujun, P. Jeppesen, and S. N. Knudsen, �??Broad-band and pulsewidth-maintained wavelength conversion based on a high-nonlinearity DSF nonlinear optical loop mirror,�?? IEEE Photon. Technol. Lett. 13, 344-346 (2001).
[CrossRef]

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, �??Four-wave mixing based, 10Gbit/s tuneable wavelength conversion using a holey fiber with a high SBS threshold,�?? IEEE Photon. Technol. Lett. 15, 440-442 (2003).
[CrossRef]

L. R. Rau, W. Wang, S. Camatel, H. Poulsen, and D. J. Blumenthal, �??All-optical 160-Gb/s phase reconstructing wavelength conversion using cross-phase modulation (XPM) in dispersion-shifted fiber,�?? IEEE Photon. Technol. Lett. 16, 2520-2522 (2004).
[CrossRef]

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, �??A tuneable WDM wavelength converter based on cross phase modulation effects in holey fiber,�?? IEEE Photon. Technol. Lett. 15, 437-439 (2003).
[CrossRef]

OFC 2004

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, �??Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1.km-1,�?? in Proc. Optical Fiber Communications Conference (OFC 2004), Paper PDP26 (2004).

Opt. Lett.

J. H. Lee, T. Tanemura, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, �??Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical-time division demultiplexing based on polarization rotation and wavelength shift induced by cross-phase modulation,�?? Opt. Lett. 30, No.11 (2005).
[PubMed]

Optics Lett.

A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, �??Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 m,�?? Optics Lett. 21, 1966-1968 (1996).
[CrossRef]

Other

G. P. Agrawal, Nonlinear fiber optics (Academic Press, 2001), 210-216.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Measured optical spectrum for nonlinear four-wave mixing in the Bi-NLF fabricated. (b) Measured nonlinear phase shift versus input signal power (The dashed line is a linear fit).

Fig. 2.
Fig. 2.

Experimental setup for the 80-Gbit/s wavelength converter using a 1-m-long Bi-NLF.

Fig. 3.
Fig. 3.

Measured output optical spectrum after the polarizer together with that after the filter.

Fig. 4.
Fig. 4.

(a) Measured autocorrelation traces of the 1555-nm original data pulses and the 1545-nm wavelength-converted pulses. (b) Measured temporal width of the wavelength-converted pulses as a function of probe beam wavelength.

Fig. 5.
Fig. 5.

(a) Measured eye diagrams for the 80-Gbit/s input control and the 80-Gbit/s wavelength-converted signals together with those of the 10-Gbit/s back-to-back and the 10-Gbit/s demultiplexed signals (input pulses: 1555 nm, wavelength-converted pulses: 1545nm). (b) Measured BER’s for the 80-to-10-Gbit/s demultiplexed wavelength-converted signal and the 10-Gbit/s back-to-back signal.

Metrics