Abstract

An experimental study of the lasing characteristics of photonic crystal lasers based on the conjugated polymer 2-methoxy-5-(2'- ethylhexyloxy)-1,4-phenylenevinylene (MEH-PPV) is reported in this letter. One and two dimensional (1D, 2D) photonic crystal structures were patterned on a glass substrate through interferometric lithography on photoresist layers. A 1.5 µm layer of polymethylglutarimide (PMGI) was deposited to prevent photoxidation of the polymer. Lasing action was observed under optically pumped conditions. Instabilities associated with pumping geometries were demonstrated in the case of 2D photonic crystal laser. As a result, the laser spectrum and threshold gain were found to be strongly dependent on the excitation geometry. The broad spectrum of the amplified spontaneous emission (ASE) allows laser tunability by engineering the effective refractive index of the devices or by controlling the periodicity of the photonic crystal.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. W. Streifer, D. R. Scifres and R. D. Burham, �??Couple wave analysis of DFB and DBR Lasers,�?? J. Quantum Electron. 13 134-141 (1977)
    [CrossRef]
  2. H. Kogelnik and C. V. Shank, �??Stimulated emission in a periodic structure,�?? Appl. Phys. Lett. 18 152 (1971)
    [CrossRef]
  3. Y. Shi, J. Liu and Y. Yang, �??Device performance and polymer morphology in polymer light emitting diodes : morphology dependent emission spectra,�?? Macromol. Symp. 154, 187-197 (2000)
    [CrossRef]
  4. J. Gao, G. Yu, and A. J. Heeger, �??Polymer p-i-n Junction Photovoltaic Cells,�?? Adv. Mater 10, 692-695 (1998)
    [CrossRef]
  5. J. Gao F. Hide, and H. Wang, �??Efficient photodetectors and photovoltaic cells from composites of fullerenes and conjugated polymers: Photoinduced electron transfer,�?? Synth. Met. 84, 979-980 (1997)
  6. T. Sakanoue, E. Fujiwara, R. Yamada, and H. Tada, �??Visible light emission from polymer-based field effect transistors,�?? Appl. Phys. Lett. 84, 3037-3039 (2004)
    [CrossRef]
  7. M. D. McGehee, A.J. Heeger, �??Semiconducting (Conjugated) Polymers as Materials for Solid-State Lasers,�?? Adv. Mater, 22, 1655-1668 (2000)
  8. N.M. Lawandy,R.M. Balachandran, A.S.L. Gomez and E. Sauvain, �??Laser action in strongly scattering Media,�?? Nature, 368 436-438 (1994)
    [CrossRef]
  9. G. Turnbull, P. Andrews, W. Barnes, I. Samuel, �??Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,�?? Phys. Rev. B 64 125122-1 (2001)
    [CrossRef]
  10. M. D. McGehee, M. A. Diaz-Garcia, F. Hide, R. Gupta, E. K. Miller, �??Semiconducting polymer distributed feedback lasers,�?? Appl. Phys. Lett. 72, 1536-1538 (1998)
    [CrossRef]
  11. M. Toda, �??Proposed cross grating single-mode DFB laser,�?? J. Quantum Electron. 28 1653 -1662 (1992)
    [CrossRef]
  12. S. Riechel, C. Kallinger, U. Lemmer, J. Feldman, A. Gombert, V. Wittwer, U. Sherf, �??A nearly limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,�?? Appl. Phys. Lett. 77, 2310-2312 (1998)
    [CrossRef]

Adv. Mater (2)

J. Gao, G. Yu, and A. J. Heeger, �??Polymer p-i-n Junction Photovoltaic Cells,�?? Adv. Mater 10, 692-695 (1998)
[CrossRef]

M. D. McGehee, A.J. Heeger, �??Semiconducting (Conjugated) Polymers as Materials for Solid-State Lasers,�?? Adv. Mater, 22, 1655-1668 (2000)

Appl. Phys. Lett. (4)

T. Sakanoue, E. Fujiwara, R. Yamada, and H. Tada, �??Visible light emission from polymer-based field effect transistors,�?? Appl. Phys. Lett. 84, 3037-3039 (2004)
[CrossRef]

H. Kogelnik and C. V. Shank, �??Stimulated emission in a periodic structure,�?? Appl. Phys. Lett. 18 152 (1971)
[CrossRef]

M. D. McGehee, M. A. Diaz-Garcia, F. Hide, R. Gupta, E. K. Miller, �??Semiconducting polymer distributed feedback lasers,�?? Appl. Phys. Lett. 72, 1536-1538 (1998)
[CrossRef]

S. Riechel, C. Kallinger, U. Lemmer, J. Feldman, A. Gombert, V. Wittwer, U. Sherf, �??A nearly limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,�?? Appl. Phys. Lett. 77, 2310-2312 (1998)
[CrossRef]

J. Quantum Electron. (2)

M. Toda, �??Proposed cross grating single-mode DFB laser,�?? J. Quantum Electron. 28 1653 -1662 (1992)
[CrossRef]

W. Streifer, D. R. Scifres and R. D. Burham, �??Couple wave analysis of DFB and DBR Lasers,�?? J. Quantum Electron. 13 134-141 (1977)
[CrossRef]

Macromol. Symp. (1)

Y. Shi, J. Liu and Y. Yang, �??Device performance and polymer morphology in polymer light emitting diodes : morphology dependent emission spectra,�?? Macromol. Symp. 154, 187-197 (2000)
[CrossRef]

Nature (1)

N.M. Lawandy,R.M. Balachandran, A.S.L. Gomez and E. Sauvain, �??Laser action in strongly scattering Media,�?? Nature, 368 436-438 (1994)
[CrossRef]

Phys. Rev. B (1)

G. Turnbull, P. Andrews, W. Barnes, I. Samuel, �??Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,�?? Phys. Rev. B 64 125122-1 (2001)
[CrossRef]

Synth. Met. (1)

J. Gao F. Hide, and H. Wang, �??Efficient photodetectors and photovoltaic cells from composites of fullerenes and conjugated polymers: Photoinduced electron transfer,�?? Synth. Met. 84, 979-980 (1997)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics