Abstract

We demonstrate a silicon modulator with an intrinsic bandwidth of 10 GHz and data transmission from 6 Gbps to 10 Gbps. Such unprecedented bandwidth performance in silicon is achieved through improvements in material quality, device design, and driver circuitry.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. QE-23, 123–129 (1987).
    [Crossref]
  2. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia., “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor.” Nature 427, 615–618 (2004).
    [Crossref] [PubMed]
  3. D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin, and O. Cohen, “A gigahertz silicon-on-insulator Mach-Zehnder modulator,” in Optical Fiber Communication Conference, Vol. 2 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 2004), pp. 3–5.
  4. D. Samara-Rubio, U. D. Keil, L. Liao, T. Franck, A. Liu, D. Hodge, D. Rubin, and R. Cohen, “Customized drive electronics to extend silicon optical modulators to 4Gbps,” submitted for publication.
  5. L. Liao, D. Lim, A. Agarwal, X. Duan, K. Lee, and L. Kimerling, “Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electronic Materials 29, 1380–1386 (2000).
    [Crossref]
  6. S. Pae, T. Su, J. P. Denton, and G. W. Neudeck, “Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth,” IEEE Electron. Dev. Lett. 20, 194–196 (1999).
    [Crossref]
  7. R.A. Soref and J. P. Larenzo, “All-silicon active and passive guided-wave components for λ=1.3 & 1.6µm,” IEEE J. Quantum Electron. QE-22, 873–879 (1986).
    [Crossref]
  8. L. Liao, A. Liu, R. Jones, D. Rubin, D. Samara-Rubio, O. Cohen, M. Salib, and M. Paniccia, “Phase modulation efficiency and transmission loss of silicon optical phase shifters,” IEEE J. Quantum Electron. QE-41, 250–257 (2005).
    [Crossref]
  9. V. Almeida, R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Optics Letters 28, 1302–1304 (2003).
    [Crossref] [PubMed]
  10. G. Masanovic, V. Passaro, and G. Reed, “Coupling to nanophotonic waveguides using a dual grating-assisted directional coupler,” IEE Proc.- Optoelectronics 152, 41–48 (2005)
    [Crossref]
  11. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Selected Topics in Quantum Electron. 11, 232–240 (2005).
    [Crossref]
  12. P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, “CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology,” IEEE Photon. Technol. Lett. 12, 660–662, (2000).
    [Crossref]
  13. M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond, submilliwatt, silicon on insulator thermooptic switch,” Integrated Photonics Research Conference Proceedings, Paper IWA2, San Francisco, June 30, 2004.
  14. E. L. Wooten et al. “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
    [Crossref]
  15. M. M. Howerton, R. P. Moeller, A. S. Greenblatt, and R. Krahenbuhl, “Fully packaged, broad-band LiNbO3 modulator with low drive voltage,” IEEE Photon. Technol. Lett. 12, 792–794 (2000).
    [Crossref]
  16. J. E. Zucker, K. L. Jones, B. I. Miller, and U. Koren, “Miniature Mach-Zhender InGaAsP quantum well waveguide interferometers for 1.3 µm,” IEEE Photon. Technol. Lett. 2, 32–34 (1990).
    [Crossref]
  17. J. S. Cites and P. R. Ashley, “High-performance Mach-Zehnder modulators in multiple quantum well GaAs/AlGaAs,” J. Lightwave Technol. 12, 1167–1173 (1992).
    [Crossref]
  18. M. Fetterman, C.-P. Chao, and S. R. Forrest, “Fabrication and analysis of high-contrast InGaAsP-InP Mach-Zehnder modulators for use at 1.55 µm wavelength,” IEEE Photon. Technol. Lett. 8, 69–71 (1996).
    [Crossref]
  19. T. Ido et al., “Ultra-high-speed multiple-quantum-well electro-absorption optical modulators with integrated waveguides,” J. Lightwave Technol. 14, 2026–2034 (1996).
    [Crossref]
  20. A. Liu, D. Samara-Rubio, L. Liao, and M. Paniccia, “Scaling the modulation bandwidth and phase efficiency of a silicon optical modulator,” IEEE J. Sel. Top. Quantum Electron.11, (March/April 2005).

2005 (2)

G. Masanovic, V. Passaro, and G. Reed, “Coupling to nanophotonic waveguides using a dual grating-assisted directional coupler,” IEE Proc.- Optoelectronics 152, 41–48 (2005)
[Crossref]

L. Liao, A. Liu, R. Jones, D. Rubin, D. Samara-Rubio, O. Cohen, M. Salib, and M. Paniccia, “Phase modulation efficiency and transmission loss of silicon optical phase shifters,” IEEE J. Quantum Electron. QE-41, 250–257 (2005).
[Crossref]

2004 (1)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia., “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor.” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

2003 (1)

V. Almeida, R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Optics Letters 28, 1302–1304 (2003).
[Crossref] [PubMed]

2000 (4)

L. Liao, D. Lim, A. Agarwal, X. Duan, K. Lee, and L. Kimerling, “Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electronic Materials 29, 1380–1386 (2000).
[Crossref]

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, “CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology,” IEEE Photon. Technol. Lett. 12, 660–662, (2000).
[Crossref]

E. L. Wooten et al. “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

M. M. Howerton, R. P. Moeller, A. S. Greenblatt, and R. Krahenbuhl, “Fully packaged, broad-band LiNbO3 modulator with low drive voltage,” IEEE Photon. Technol. Lett. 12, 792–794 (2000).
[Crossref]

1999 (1)

S. Pae, T. Su, J. P. Denton, and G. W. Neudeck, “Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth,” IEEE Electron. Dev. Lett. 20, 194–196 (1999).
[Crossref]

1996 (2)

M. Fetterman, C.-P. Chao, and S. R. Forrest, “Fabrication and analysis of high-contrast InGaAsP-InP Mach-Zehnder modulators for use at 1.55 µm wavelength,” IEEE Photon. Technol. Lett. 8, 69–71 (1996).
[Crossref]

T. Ido et al., “Ultra-high-speed multiple-quantum-well electro-absorption optical modulators with integrated waveguides,” J. Lightwave Technol. 14, 2026–2034 (1996).
[Crossref]

1992 (1)

J. S. Cites and P. R. Ashley, “High-performance Mach-Zehnder modulators in multiple quantum well GaAs/AlGaAs,” J. Lightwave Technol. 12, 1167–1173 (1992).
[Crossref]

1990 (1)

J. E. Zucker, K. L. Jones, B. I. Miller, and U. Koren, “Miniature Mach-Zhender InGaAsP quantum well waveguide interferometers for 1.3 µm,” IEEE Photon. Technol. Lett. 2, 32–34 (1990).
[Crossref]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. QE-23, 123–129 (1987).
[Crossref]

1986 (1)

R.A. Soref and J. P. Larenzo, “All-silicon active and passive guided-wave components for λ=1.3 & 1.6µm,” IEEE J. Quantum Electron. QE-22, 873–879 (1986).
[Crossref]

Agarwal, A.

L. Liao, D. Lim, A. Agarwal, X. Duan, K. Lee, and L. Kimerling, “Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electronic Materials 29, 1380–1386 (2000).
[Crossref]

Almeida, V.

V. Almeida, R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Optics Letters 28, 1302–1304 (2003).
[Crossref] [PubMed]

Ashley, P. R.

J. S. Cites and P. R. Ashley, “High-performance Mach-Zehnder modulators in multiple quantum well GaAs/AlGaAs,” J. Lightwave Technol. 12, 1167–1173 (1992).
[Crossref]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. QE-23, 123–129 (1987).
[Crossref]

Chabloz, M.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, “CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology,” IEEE Photon. Technol. Lett. 12, 660–662, (2000).
[Crossref]

Chao, C.-P.

M. Fetterman, C.-P. Chao, and S. R. Forrest, “Fabrication and analysis of high-contrast InGaAsP-InP Mach-Zehnder modulators for use at 1.55 µm wavelength,” IEEE Photon. Technol. Lett. 8, 69–71 (1996).
[Crossref]

Cites, J. S.

J. S. Cites and P. R. Ashley, “High-performance Mach-Zehnder modulators in multiple quantum well GaAs/AlGaAs,” J. Lightwave Technol. 12, 1167–1173 (1992).
[Crossref]

Cohen, O.

L. Liao, A. Liu, R. Jones, D. Rubin, D. Samara-Rubio, O. Cohen, M. Salib, and M. Paniccia, “Phase modulation efficiency and transmission loss of silicon optical phase shifters,” IEEE J. Quantum Electron. QE-41, 250–257 (2005).
[Crossref]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia., “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor.” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin, and O. Cohen, “A gigahertz silicon-on-insulator Mach-Zehnder modulator,” in Optical Fiber Communication Conference, Vol. 2 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 2004), pp. 3–5.

Cohen, R.

D. Samara-Rubio, U. D. Keil, L. Liao, T. Franck, A. Liu, D. Hodge, D. Rubin, and R. Cohen, “Customized drive electronics to extend silicon optical modulators to 4Gbps,” submitted for publication.

Dainesi, P.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, “CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology,” IEEE Photon. Technol. Lett. 12, 660–662, (2000).
[Crossref]

Declerq, M.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, “CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology,” IEEE Photon. Technol. Lett. 12, 660–662, (2000).
[Crossref]

Denton, J. P.

S. Pae, T. Su, J. P. Denton, and G. W. Neudeck, “Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth,” IEEE Electron. Dev. Lett. 20, 194–196 (1999).
[Crossref]

Duan, X.

L. Liao, D. Lim, A. Agarwal, X. Duan, K. Lee, and L. Kimerling, “Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electronic Materials 29, 1380–1386 (2000).
[Crossref]

Fazan, P.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, “CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology,” IEEE Photon. Technol. Lett. 12, 660–662, (2000).
[Crossref]

Fetterman, M.

M. Fetterman, C.-P. Chao, and S. R. Forrest, “Fabrication and analysis of high-contrast InGaAsP-InP Mach-Zehnder modulators for use at 1.55 µm wavelength,” IEEE Photon. Technol. Lett. 8, 69–71 (1996).
[Crossref]

Fluckiger, Ph.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, “CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology,” IEEE Photon. Technol. Lett. 12, 660–662, (2000).
[Crossref]

Forrest, S. R.

M. Fetterman, C.-P. Chao, and S. R. Forrest, “Fabrication and analysis of high-contrast InGaAsP-InP Mach-Zehnder modulators for use at 1.55 µm wavelength,” IEEE Photon. Technol. Lett. 8, 69–71 (1996).
[Crossref]

Franck, T.

D. Samara-Rubio, U. D. Keil, L. Liao, T. Franck, A. Liu, D. Hodge, D. Rubin, and R. Cohen, “Customized drive electronics to extend silicon optical modulators to 4Gbps,” submitted for publication.

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Selected Topics in Quantum Electron. 11, 232–240 (2005).
[Crossref]

Geis, M. W.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond, submilliwatt, silicon on insulator thermooptic switch,” Integrated Photonics Research Conference Proceedings, Paper IWA2, San Francisco, June 30, 2004.

Greenblatt, A. S.

M. M. Howerton, R. P. Moeller, A. S. Greenblatt, and R. Krahenbuhl, “Fully packaged, broad-band LiNbO3 modulator with low drive voltage,” IEEE Photon. Technol. Lett. 12, 792–794 (2000).
[Crossref]

Hodge, D.

D. Samara-Rubio, U. D. Keil, L. Liao, T. Franck, A. Liu, D. Hodge, D. Rubin, and R. Cohen, “Customized drive electronics to extend silicon optical modulators to 4Gbps,” submitted for publication.

Howerton, M. M.

M. M. Howerton, R. P. Moeller, A. S. Greenblatt, and R. Krahenbuhl, “Fully packaged, broad-band LiNbO3 modulator with low drive voltage,” IEEE Photon. Technol. Lett. 12, 792–794 (2000).
[Crossref]

Ido, T.

T. Ido et al., “Ultra-high-speed multiple-quantum-well electro-absorption optical modulators with integrated waveguides,” J. Lightwave Technol. 14, 2026–2034 (1996).
[Crossref]

Ionescu, A.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, “CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology,” IEEE Photon. Technol. Lett. 12, 660–662, (2000).
[Crossref]

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Selected Topics in Quantum Electron. 11, 232–240 (2005).
[Crossref]

Jones, K. L.

J. E. Zucker, K. L. Jones, B. I. Miller, and U. Koren, “Miniature Mach-Zhender InGaAsP quantum well waveguide interferometers for 1.3 µm,” IEEE Photon. Technol. Lett. 2, 32–34 (1990).
[Crossref]

Jones, R.

L. Liao, A. Liu, R. Jones, D. Rubin, D. Samara-Rubio, O. Cohen, M. Salib, and M. Paniccia, “Phase modulation efficiency and transmission loss of silicon optical phase shifters,” IEEE J. Quantum Electron. QE-41, 250–257 (2005).
[Crossref]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia., “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor.” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin, and O. Cohen, “A gigahertz silicon-on-insulator Mach-Zehnder modulator,” in Optical Fiber Communication Conference, Vol. 2 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 2004), pp. 3–5.

Keil, U. D.

D. Samara-Rubio, U. D. Keil, L. Liao, T. Franck, A. Liu, D. Hodge, D. Rubin, and R. Cohen, “Customized drive electronics to extend silicon optical modulators to 4Gbps,” submitted for publication.

Kimerling, L.

L. Liao, D. Lim, A. Agarwal, X. Duan, K. Lee, and L. Kimerling, “Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electronic Materials 29, 1380–1386 (2000).
[Crossref]

Koren, U.

J. E. Zucker, K. L. Jones, B. I. Miller, and U. Koren, “Miniature Mach-Zhender InGaAsP quantum well waveguide interferometers for 1.3 µm,” IEEE Photon. Technol. Lett. 2, 32–34 (1990).
[Crossref]

Krahenbuhl, R.

M. M. Howerton, R. P. Moeller, A. S. Greenblatt, and R. Krahenbuhl, “Fully packaged, broad-band LiNbO3 modulator with low drive voltage,” IEEE Photon. Technol. Lett. 12, 792–794 (2000).
[Crossref]

Kung, A.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, “CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology,” IEEE Photon. Technol. Lett. 12, 660–662, (2000).
[Crossref]

Lagos, A.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, “CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology,” IEEE Photon. Technol. Lett. 12, 660–662, (2000).
[Crossref]

Larenzo, J. P.

R.A. Soref and J. P. Larenzo, “All-silicon active and passive guided-wave components for λ=1.3 & 1.6µm,” IEEE J. Quantum Electron. QE-22, 873–879 (1986).
[Crossref]

Lee, K.

L. Liao, D. Lim, A. Agarwal, X. Duan, K. Lee, and L. Kimerling, “Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electronic Materials 29, 1380–1386 (2000).
[Crossref]

Liao, L.

L. Liao, A. Liu, R. Jones, D. Rubin, D. Samara-Rubio, O. Cohen, M. Salib, and M. Paniccia, “Phase modulation efficiency and transmission loss of silicon optical phase shifters,” IEEE J. Quantum Electron. QE-41, 250–257 (2005).
[Crossref]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia., “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor.” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

L. Liao, D. Lim, A. Agarwal, X. Duan, K. Lee, and L. Kimerling, “Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electronic Materials 29, 1380–1386 (2000).
[Crossref]

D. Samara-Rubio, U. D. Keil, L. Liao, T. Franck, A. Liu, D. Hodge, D. Rubin, and R. Cohen, “Customized drive electronics to extend silicon optical modulators to 4Gbps,” submitted for publication.

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin, and O. Cohen, “A gigahertz silicon-on-insulator Mach-Zehnder modulator,” in Optical Fiber Communication Conference, Vol. 2 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 2004), pp. 3–5.

A. Liu, D. Samara-Rubio, L. Liao, and M. Paniccia, “Scaling the modulation bandwidth and phase efficiency of a silicon optical modulator,” IEEE J. Sel. Top. Quantum Electron.11, (March/April 2005).

Lim, D.

L. Liao, D. Lim, A. Agarwal, X. Duan, K. Lee, and L. Kimerling, “Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electronic Materials 29, 1380–1386 (2000).
[Crossref]

Lipson, M.

V. Almeida, R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Optics Letters 28, 1302–1304 (2003).
[Crossref] [PubMed]

Liu, A.

L. Liao, A. Liu, R. Jones, D. Rubin, D. Samara-Rubio, O. Cohen, M. Salib, and M. Paniccia, “Phase modulation efficiency and transmission loss of silicon optical phase shifters,” IEEE J. Quantum Electron. QE-41, 250–257 (2005).
[Crossref]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia., “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor.” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin, and O. Cohen, “A gigahertz silicon-on-insulator Mach-Zehnder modulator,” in Optical Fiber Communication Conference, Vol. 2 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 2004), pp. 3–5.

D. Samara-Rubio, U. D. Keil, L. Liao, T. Franck, A. Liu, D. Hodge, D. Rubin, and R. Cohen, “Customized drive electronics to extend silicon optical modulators to 4Gbps,” submitted for publication.

A. Liu, D. Samara-Rubio, L. Liao, and M. Paniccia, “Scaling the modulation bandwidth and phase efficiency of a silicon optical modulator,” IEEE J. Sel. Top. Quantum Electron.11, (March/April 2005).

Lyszczarz, T. M.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond, submilliwatt, silicon on insulator thermooptic switch,” Integrated Photonics Research Conference Proceedings, Paper IWA2, San Francisco, June 30, 2004.

Masanovic, G.

G. Masanovic, V. Passaro, and G. Reed, “Coupling to nanophotonic waveguides using a dual grating-assisted directional coupler,” IEE Proc.- Optoelectronics 152, 41–48 (2005)
[Crossref]

Miller, B. I.

J. E. Zucker, K. L. Jones, B. I. Miller, and U. Koren, “Miniature Mach-Zhender InGaAsP quantum well waveguide interferometers for 1.3 µm,” IEEE Photon. Technol. Lett. 2, 32–34 (1990).
[Crossref]

Moeller, R. P.

M. M. Howerton, R. P. Moeller, A. S. Greenblatt, and R. Krahenbuhl, “Fully packaged, broad-band LiNbO3 modulator with low drive voltage,” IEEE Photon. Technol. Lett. 12, 792–794 (2000).
[Crossref]

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Selected Topics in Quantum Electron. 11, 232–240 (2005).
[Crossref]

Neudeck, G. W.

S. Pae, T. Su, J. P. Denton, and G. W. Neudeck, “Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth,” IEEE Electron. Dev. Lett. 20, 194–196 (1999).
[Crossref]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia., “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor.” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Pae, S.

S. Pae, T. Su, J. P. Denton, and G. W. Neudeck, “Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth,” IEEE Electron. Dev. Lett. 20, 194–196 (1999).
[Crossref]

Panepucci, R.

V. Almeida, R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Optics Letters 28, 1302–1304 (2003).
[Crossref] [PubMed]

Paniccia, M.

L. Liao, A. Liu, R. Jones, D. Rubin, D. Samara-Rubio, O. Cohen, M. Salib, and M. Paniccia, “Phase modulation efficiency and transmission loss of silicon optical phase shifters,” IEEE J. Quantum Electron. QE-41, 250–257 (2005).
[Crossref]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia., “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor.” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin, and O. Cohen, “A gigahertz silicon-on-insulator Mach-Zehnder modulator,” in Optical Fiber Communication Conference, Vol. 2 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 2004), pp. 3–5.

A. Liu, D. Samara-Rubio, L. Liao, and M. Paniccia, “Scaling the modulation bandwidth and phase efficiency of a silicon optical modulator,” IEEE J. Sel. Top. Quantum Electron.11, (March/April 2005).

Passaro, V.

G. Masanovic, V. Passaro, and G. Reed, “Coupling to nanophotonic waveguides using a dual grating-assisted directional coupler,” IEE Proc.- Optoelectronics 152, 41–48 (2005)
[Crossref]

Reed, G.

G. Masanovic, V. Passaro, and G. Reed, “Coupling to nanophotonic waveguides using a dual grating-assisted directional coupler,” IEE Proc.- Optoelectronics 152, 41–48 (2005)
[Crossref]

Renaud, Ph.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, “CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology,” IEEE Photon. Technol. Lett. 12, 660–662, (2000).
[Crossref]

Robert, Ph.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, “CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology,” IEEE Photon. Technol. Lett. 12, 660–662, (2000).
[Crossref]

Rubin, D.

L. Liao, A. Liu, R. Jones, D. Rubin, D. Samara-Rubio, O. Cohen, M. Salib, and M. Paniccia, “Phase modulation efficiency and transmission loss of silicon optical phase shifters,” IEEE J. Quantum Electron. QE-41, 250–257 (2005).
[Crossref]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia., “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor.” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin, and O. Cohen, “A gigahertz silicon-on-insulator Mach-Zehnder modulator,” in Optical Fiber Communication Conference, Vol. 2 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 2004), pp. 3–5.

D. Samara-Rubio, U. D. Keil, L. Liao, T. Franck, A. Liu, D. Hodge, D. Rubin, and R. Cohen, “Customized drive electronics to extend silicon optical modulators to 4Gbps,” submitted for publication.

Salib, M.

L. Liao, A. Liu, R. Jones, D. Rubin, D. Samara-Rubio, O. Cohen, M. Salib, and M. Paniccia, “Phase modulation efficiency and transmission loss of silicon optical phase shifters,” IEEE J. Quantum Electron. QE-41, 250–257 (2005).
[Crossref]

Samara-Rubio, D.

L. Liao, A. Liu, R. Jones, D. Rubin, D. Samara-Rubio, O. Cohen, M. Salib, and M. Paniccia, “Phase modulation efficiency and transmission loss of silicon optical phase shifters,” IEEE J. Quantum Electron. QE-41, 250–257 (2005).
[Crossref]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia., “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor.” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin, and O. Cohen, “A gigahertz silicon-on-insulator Mach-Zehnder modulator,” in Optical Fiber Communication Conference, Vol. 2 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 2004), pp. 3–5.

D. Samara-Rubio, U. D. Keil, L. Liao, T. Franck, A. Liu, D. Hodge, D. Rubin, and R. Cohen, “Customized drive electronics to extend silicon optical modulators to 4Gbps,” submitted for publication.

A. Liu, D. Samara-Rubio, L. Liao, and M. Paniccia, “Scaling the modulation bandwidth and phase efficiency of a silicon optical modulator,” IEEE J. Sel. Top. Quantum Electron.11, (March/April 2005).

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Selected Topics in Quantum Electron. 11, 232–240 (2005).
[Crossref]

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. QE-23, 123–129 (1987).
[Crossref]

Soref, R.A.

R.A. Soref and J. P. Larenzo, “All-silicon active and passive guided-wave components for λ=1.3 & 1.6µm,” IEEE J. Quantum Electron. QE-22, 873–879 (1986).
[Crossref]

Spector, S. J.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond, submilliwatt, silicon on insulator thermooptic switch,” Integrated Photonics Research Conference Proceedings, Paper IWA2, San Francisco, June 30, 2004.

Su, T.

S. Pae, T. Su, J. P. Denton, and G. W. Neudeck, “Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth,” IEEE Electron. Dev. Lett. 20, 194–196 (1999).
[Crossref]

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Selected Topics in Quantum Electron. 11, 232–240 (2005).
[Crossref]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Selected Topics in Quantum Electron. 11, 232–240 (2005).
[Crossref]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Selected Topics in Quantum Electron. 11, 232–240 (2005).
[Crossref]

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Selected Topics in Quantum Electron. 11, 232–240 (2005).
[Crossref]

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Selected Topics in Quantum Electron. 11, 232–240 (2005).
[Crossref]

Williamson, R. C.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond, submilliwatt, silicon on insulator thermooptic switch,” Integrated Photonics Research Conference Proceedings, Paper IWA2, San Francisco, June 30, 2004.

Wooten, E. L.

E. L. Wooten et al. “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Selected Topics in Quantum Electron. 11, 232–240 (2005).
[Crossref]

Zucker, J. E.

J. E. Zucker, K. L. Jones, B. I. Miller, and U. Koren, “Miniature Mach-Zhender InGaAsP quantum well waveguide interferometers for 1.3 µm,” IEEE Photon. Technol. Lett. 2, 32–34 (1990).
[Crossref]

IEE Proc.- Optoelectronics (1)

G. Masanovic, V. Passaro, and G. Reed, “Coupling to nanophotonic waveguides using a dual grating-assisted directional coupler,” IEE Proc.- Optoelectronics 152, 41–48 (2005)
[Crossref]

IEEE Electron. Dev. Lett. (1)

S. Pae, T. Su, J. P. Denton, and G. W. Neudeck, “Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth,” IEEE Electron. Dev. Lett. 20, 194–196 (1999).
[Crossref]

IEEE J. Quantum Electron. (3)

R.A. Soref and J. P. Larenzo, “All-silicon active and passive guided-wave components for λ=1.3 & 1.6µm,” IEEE J. Quantum Electron. QE-22, 873–879 (1986).
[Crossref]

L. Liao, A. Liu, R. Jones, D. Rubin, D. Samara-Rubio, O. Cohen, M. Salib, and M. Paniccia, “Phase modulation efficiency and transmission loss of silicon optical phase shifters,” IEEE J. Quantum Electron. QE-41, 250–257 (2005).
[Crossref]

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. QE-23, 123–129 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. L. Wooten et al. “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

IEEE J. Selected Topics in Quantum Electron. (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Selected Topics in Quantum Electron. 11, 232–240 (2005).
[Crossref]

IEEE Photon. Technol. Lett. (4)

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, “CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology,” IEEE Photon. Technol. Lett. 12, 660–662, (2000).
[Crossref]

M. M. Howerton, R. P. Moeller, A. S. Greenblatt, and R. Krahenbuhl, “Fully packaged, broad-band LiNbO3 modulator with low drive voltage,” IEEE Photon. Technol. Lett. 12, 792–794 (2000).
[Crossref]

J. E. Zucker, K. L. Jones, B. I. Miller, and U. Koren, “Miniature Mach-Zhender InGaAsP quantum well waveguide interferometers for 1.3 µm,” IEEE Photon. Technol. Lett. 2, 32–34 (1990).
[Crossref]

M. Fetterman, C.-P. Chao, and S. R. Forrest, “Fabrication and analysis of high-contrast InGaAsP-InP Mach-Zehnder modulators for use at 1.55 µm wavelength,” IEEE Photon. Technol. Lett. 8, 69–71 (1996).
[Crossref]

J. Electronic Materials (1)

L. Liao, D. Lim, A. Agarwal, X. Duan, K. Lee, and L. Kimerling, “Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electronic Materials 29, 1380–1386 (2000).
[Crossref]

J. Lightwave Technol. (2)

T. Ido et al., “Ultra-high-speed multiple-quantum-well electro-absorption optical modulators with integrated waveguides,” J. Lightwave Technol. 14, 2026–2034 (1996).
[Crossref]

J. S. Cites and P. R. Ashley, “High-performance Mach-Zehnder modulators in multiple quantum well GaAs/AlGaAs,” J. Lightwave Technol. 12, 1167–1173 (1992).
[Crossref]

Nature (1)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia., “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor.” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Optics Letters (1)

V. Almeida, R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Optics Letters 28, 1302–1304 (2003).
[Crossref] [PubMed]

Other (4)

D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin, and O. Cohen, “A gigahertz silicon-on-insulator Mach-Zehnder modulator,” in Optical Fiber Communication Conference, Vol. 2 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 2004), pp. 3–5.

D. Samara-Rubio, U. D. Keil, L. Liao, T. Franck, A. Liu, D. Hodge, D. Rubin, and R. Cohen, “Customized drive electronics to extend silicon optical modulators to 4Gbps,” submitted for publication.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond, submilliwatt, silicon on insulator thermooptic switch,” Integrated Photonics Research Conference Proceedings, Paper IWA2, San Francisco, June 30, 2004.

A. Liu, D. Samara-Rubio, L. Liao, and M. Paniccia, “Scaling the modulation bandwidth and phase efficiency of a silicon optical modulator,” IEEE J. Sel. Top. Quantum Electron.11, (March/April 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

SEM cross-section of the new phase shifter with ELO-Si rib.

Fig. 2.
Fig. 2.

Vertical line-cuts of the modeled mode profiles of the new device depicted in Fig. 1 and the first version of the device presented in [2,3]. The optical field intensity at the gate is higher for the new device which allows the gate charges to more strongly influence neff.

Fig. 3.
Fig. 3.

Schematic of MZI, wire-bonds, and driver IC. Not drawn to scale.

Fig. 4.
Fig. 4.

Impedance of a 315µm long phase-shift segment from the new ELO-Si device. The reactance is well modeled as a 2.4 pF capacitor, and the resistance is approximately 6.5 Ω, giving an RC cutoff of 10.2 GHz.

Fig. 5.
Fig. 5.

Optical eye diagrams of modulator co-packaged with driver; both eye diagrams have the same vertical and horizontal scales. (a) 6 Gbps: ER, RT, and FT are 4.5 dB, 57 ps, and 54 ps, respectively. (b) 10 Gbps: ER, RT, and FT are 3.8 dB, 55 ps, and 56 ps, respectively. Measured modulation speed is limited by driver performance.

Metrics