Abstract

A new diarylethene doped with poly(methyl methacrylate) film is developed and its characteristics of volume holographic recording are investigated. The maximum diffraction efficiency of the 10µm thick film is 1.2%, and the rewritable hologram recording exhibits its high resolution, fatigue resistance, negligible shrinkage, and long lifetime, which are critical to apply this material to high-density rewritable holographic data storage.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, �??Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,�?? Appl. Phys. Lett. 9, 72-74 (1966).
    [CrossRef]
  2. D. A. Waldman, C. J. Butler, and D. H. Raguin, �??CROP holographic storage media for optical data storage at greater than 100 bits/um^2,�?? Pro. SPIE 5216, 10-25 (2003).
    [CrossRef]
  3. X. J. Ke, X. Z. Yan, N. Srisanit, M. Wang, J. W. Yang, X. F. Huang, S. Z. Zhong, �??Holographic storage in carbazole-azo binary compound doped polymer,�?? Opt. Comm. 217, 69-74 (2003).
    [CrossRef]
  4. E. Kim, J. Park, S. Y. Cho, N. Kim, and J. H. Kim, �??Preparation and holographic recording of diarylethene-doped photochromic films,�?? ETRI Journal 25, 253-257 (2003).
    [CrossRef]
  5. M. Ushamani, K. Sreekumar, C. S. Kartha, R. Joseph, �??Fabrication and Characterization of Methylene-Blue-Doped Polyvinyl Alcohol-Polyacrylic Acid Blend for Holographic Recording,�?? Appl.Opt. 43, 3697-3703 (2004).
    [CrossRef] [PubMed]
  6. Y. Guo, Y. Liao, L. Cao, G. Liu, Q. He, and G. Jin, "Improvement of photorefractive properties and holographic applications of lithium niobate crystal," Opt. Express 12, 5556-5561 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5556.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5556.</a>
    [CrossRef] [PubMed]
  7. M. Irie, �??Diarylethenes for Memories and Switches,�?? Chem.Rev. 100, 1685-1716 (2000).
    [CrossRef]
  8. Y. Chen, D. X. Zeng, and M. G. Fan, �??Synthesis and photochromic properties of functional diarylethene with a 2,5-dihydrothiophene bridging unit,�?? Org. Lett. 5, 1435-1437 (2003).
    [CrossRef] [PubMed]
  9. Luo SJ, Liu GD, He QS, Jin GF, �??Holographic grating Formation in photochromic diarylethene-doped polymeric thin films,�?? Chin. Phys. Lett. 22, 107-109 (2005).
    [CrossRef]
  10. T. Kardinahl, H. Franke, �??Photoinduced refractive-index changes in fulgide-doped PMMA films,�?? Appl. Phys. A 61, 23-27 (1995).
    [CrossRef]
  11. N. Hampp, T. Juchem, �??Improvement of the diffraction efficiency and kinetics of holographic gratings in photochromic media by auxiliary light,�?? Opt. Lett. 29, 2911-2913 (2004).
    [CrossRef]
  12. V. Weiss, A. A. Friesem, and V. A. Krongauz, �??Holographic recording and all-optical modulation in photochromic polymers,�?? Opt. Lett. 18, 1089-1091 (1993).
    [CrossRef] [PubMed]
  13. J. T. Gallo, C. M. Verber, �??Model for the effects of material shrinkage on volume holograms,�?? Appl. Opt. 33, 6797-6804 (1994).
    [CrossRef] [PubMed]
  14. R. M. Shellby, D. A. Waldman and R. T. Ingwall, �??Distortions in pixel-matched holographic data storage due to lateral dimensional change of photopolymer storage media ,�?? Opt. Lett. 25, 713-715 (2000).
    [CrossRef]
  15. U.Gubler, D. Wright, W. E. Moerner and M. B. Klein, �??Photochromic polymers for the optical homodyne detection of ultrasonic surface displacements,�?? Opt. Lett. 27, 354-356 (2002).
    [CrossRef]
  16. G. H. Zhao, P. Mouroulis, �??Diffusion-model of hologram formation in dry photopolymer materials,�?? J. Mod. Opt. 41, 1929-1939, (1994).
    [CrossRef]

Appl. Opt.

Appl. Phys. A

T. Kardinahl, H. Franke, �??Photoinduced refractive-index changes in fulgide-doped PMMA films,�?? Appl. Phys. A 61, 23-27 (1995).
[CrossRef]

Appl. Phys. Lett.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, �??Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,�?? Appl. Phys. Lett. 9, 72-74 (1966).
[CrossRef]

Appl.Opt.

M. Ushamani, K. Sreekumar, C. S. Kartha, R. Joseph, �??Fabrication and Characterization of Methylene-Blue-Doped Polyvinyl Alcohol-Polyacrylic Acid Blend for Holographic Recording,�?? Appl.Opt. 43, 3697-3703 (2004).
[CrossRef] [PubMed]

Chem.Rev.

M. Irie, �??Diarylethenes for Memories and Switches,�?? Chem.Rev. 100, 1685-1716 (2000).
[CrossRef]

Chin. Phys. Lett.

Luo SJ, Liu GD, He QS, Jin GF, �??Holographic grating Formation in photochromic diarylethene-doped polymeric thin films,�?? Chin. Phys. Lett. 22, 107-109 (2005).
[CrossRef]

ETRI Journal

E. Kim, J. Park, S. Y. Cho, N. Kim, and J. H. Kim, �??Preparation and holographic recording of diarylethene-doped photochromic films,�?? ETRI Journal 25, 253-257 (2003).
[CrossRef]

J. Mod. Opt.

G. H. Zhao, P. Mouroulis, �??Diffusion-model of hologram formation in dry photopolymer materials,�?? J. Mod. Opt. 41, 1929-1939, (1994).
[CrossRef]

Opt. Comm.

X. J. Ke, X. Z. Yan, N. Srisanit, M. Wang, J. W. Yang, X. F. Huang, S. Z. Zhong, �??Holographic storage in carbazole-azo binary compound doped polymer,�?? Opt. Comm. 217, 69-74 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Org. Lett.

Y. Chen, D. X. Zeng, and M. G. Fan, �??Synthesis and photochromic properties of functional diarylethene with a 2,5-dihydrothiophene bridging unit,�?? Org. Lett. 5, 1435-1437 (2003).
[CrossRef] [PubMed]

Pro. SPIE

D. A. Waldman, C. J. Butler, and D. H. Raguin, �??CROP holographic storage media for optical data storage at greater than 100 bits/um^2,�?? Pro. SPIE 5216, 10-25 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Scheme 1.
Scheme 1.

Photoisomerization of the diarylethene.

Fig. 1.
Fig. 1.

Absorption of the diarylethene doped PMMA film at open-ring form 1a (solid line) and closed-ring form1b (dashed line).

Fig. 2.
Fig. 2.

Theoretical simulation of normalized concentration of molecules 1b for T 0<T 1<T 2<T 3 under illumination. The grating form changes from a sinusoidal shape at low exposures (linear part) to a “rectangular” shape at high exposures (nonlinear part)

Fig. 3.
Fig. 3.

Diffraction efficiency dynamics during holographic recording

Fig. 4.
Fig. 4.

Experimental setup for holographic recording and readout. HP1 and HP2: half-wave plates, S1 and S2: shutters, M1 and M2: reflecting mirrors, PBS: polarized beam-splitting prism, EL: beam-expanding lens, FL1 and FL2: Fourier lens, RC: resolution chart.

Fig. 5.
Fig. 5.

(a) Original resolution chart image without the sample film in the beam path; (b) attenuated see-through resolution chart image with the sample film in the beam path; (c) resolution chart image reconstructed with the reference beam (d) resolution chart image reconstructed with the reference beam after 100 write/erase cycles.

Fig. 6.
Fig. 6.

The reconstruction of the recorded hologram after the sample had been kept for ten months in darkness at room temperature.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

u b ( x , t ) = u 0 exp { t τ [ 1 + m cos ( 2 π x Λ ) ] } ,
u b ( x , t ) = u b 0 ( t ) + u b 1 ( t ) cos ( 2 π x Λ )
= u 0 exp ( t τ ) u 0 m t τ exp ( t τ ) cos ( 2 π x Λ ) ,
η = k [ u 0 mt τ exp ( t τ ) ] 2 ,

Metrics