Abstract

The polarization dynamics of laser subjected to weak optical feedback from birefringence external cavity are studied theoretically and experimentally. It is found that polarization flipping with hysteresis is induced by birefringence feedback, and the intensities of two eigenstates are both modulated by external cavity length. The variations of hysteresis loop and duty ratios of two eigenstates in one period of intensity modulation with phase differences of birefringence element in external cavity are observed. When the phase difference is π/2, the two eigenstates will equally alternatively oscillate, and the width of hysteresis loop is the smallest.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kannelaud and W. Culshaw, “Coherence effects in gaseous laser with axial magnetic field. II. Experimental,” Phys. Rev. 141, 237–245 (1966).
    [Crossref]
  2. A. L. Floch, G. Ropars, J. M. Lenornamd, and R. L. Naour, “Dynamics of laser eigenstates,” Phys. Rev. Lett. 52, 918–921 (1984).
    [Crossref]
  3. G. Ropars, A. L. Floch, and R. L. Naour, “Polarization control mechanisms in vectorial bistable lasers for one-frequency systems,” Phys. Rev. A 46, 623–640 (1992).
    [Crossref] [PubMed]
  4. G. Stephan and D. Hugon, “Light polarization of a quasi-isotropic laser with optical,” Phys. Rev. Lett. 55, 703–706 (1985).
    [Crossref] [PubMed]
  5. W. Xiong, P. Glanzning, P. Paddon, A. D. May, M. Bourouis, S. Laniepce, and G. Stephan, “Stability of polarized modes in a quasi-isotropic laser,” J. Opt. Soc. Am. B 8, 1236–1243 (1991).
    [Crossref]
  6. K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
    [Crossref]
  7. M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Megret, and M. Blondel, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett. 28, 1543–1545 (2003).
    [Crossref] [PubMed]
  8. L. G. Fei, S. L. Zhang, and X. J. Wan, “Influence of optical feedback from birefringence external cavity on intensity tuning and polarization of laser,” Chin. Phys. Lett. 21, 1944–1947 (2004).
    [Crossref]
  9. J. Houlihan, L. Lewis, and G. Huyet, “Feedback induced polarization switching in vertical cavity surface emitting lasers,” Opt. Comm. 232, 391–397 (2004).
    [Crossref]
  10. T. H. Peek, P. T. Bolwijn, and T. J. Alkemade, “Axial mode number of gas lasers from moving-mirror experiments,” Am. J. Phys. 35, 820–831 (1967).
    [Crossref]
  11. J. Brannon, “Laser feedback: its effect on laser frequency,” Appl. Opt. 15, 1119–1120 (1976).
    [Crossref] [PubMed]

2004 (3)

L. G. Fei, S. L. Zhang, and X. J. Wan, “Influence of optical feedback from birefringence external cavity on intensity tuning and polarization of laser,” Chin. Phys. Lett. 21, 1944–1947 (2004).
[Crossref]

J. Houlihan, L. Lewis, and G. Huyet, “Feedback induced polarization switching in vertical cavity surface emitting lasers,” Opt. Comm. 232, 391–397 (2004).
[Crossref]

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
[Crossref]

2003 (1)

1992 (1)

G. Ropars, A. L. Floch, and R. L. Naour, “Polarization control mechanisms in vectorial bistable lasers for one-frequency systems,” Phys. Rev. A 46, 623–640 (1992).
[Crossref] [PubMed]

1991 (1)

1985 (1)

G. Stephan and D. Hugon, “Light polarization of a quasi-isotropic laser with optical,” Phys. Rev. Lett. 55, 703–706 (1985).
[Crossref] [PubMed]

1984 (1)

A. L. Floch, G. Ropars, J. M. Lenornamd, and R. L. Naour, “Dynamics of laser eigenstates,” Phys. Rev. Lett. 52, 918–921 (1984).
[Crossref]

1976 (1)

1967 (1)

T. H. Peek, P. T. Bolwijn, and T. J. Alkemade, “Axial mode number of gas lasers from moving-mirror experiments,” Am. J. Phys. 35, 820–831 (1967).
[Crossref]

1966 (1)

J. Kannelaud and W. Culshaw, “Coherence effects in gaseous laser with axial magnetic field. II. Experimental,” Phys. Rev. 141, 237–245 (1966).
[Crossref]

Alkemade, T. J.

T. H. Peek, P. T. Bolwijn, and T. J. Alkemade, “Axial mode number of gas lasers from moving-mirror experiments,” Am. J. Phys. 35, 820–831 (1967).
[Crossref]

Arizaleta, M.

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
[Crossref]

Blondel, M.

Bolwijn, P. T.

T. H. Peek, P. T. Bolwijn, and T. J. Alkemade, “Axial mode number of gas lasers from moving-mirror experiments,” Am. J. Phys. 35, 820–831 (1967).
[Crossref]

Bourouis, M.

Brannon, J.

Camarena, M.

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
[Crossref]

Culshaw, W.

J. Kannelaud and W. Culshaw, “Coherence effects in gaseous laser with axial magnetic field. II. Experimental,” Phys. Rev. 141, 237–245 (1966).
[Crossref]

Fei, L. G.

L. G. Fei, S. L. Zhang, and X. J. Wan, “Influence of optical feedback from birefringence external cavity on intensity tuning and polarization of laser,” Chin. Phys. Lett. 21, 1944–1947 (2004).
[Crossref]

Floch, A. L.

G. Ropars, A. L. Floch, and R. L. Naour, “Polarization control mechanisms in vectorial bistable lasers for one-frequency systems,” Phys. Rev. A 46, 623–640 (1992).
[Crossref] [PubMed]

A. L. Floch, G. Ropars, J. M. Lenornamd, and R. L. Naour, “Dynamics of laser eigenstates,” Phys. Rev. Lett. 52, 918–921 (1984).
[Crossref]

Glanzning, P.

Houlihan, J.

J. Houlihan, L. Lewis, and G. Huyet, “Feedback induced polarization switching in vertical cavity surface emitting lasers,” Opt. Comm. 232, 391–397 (2004).
[Crossref]

Hugon, D.

G. Stephan and D. Hugon, “Light polarization of a quasi-isotropic laser with optical,” Phys. Rev. Lett. 55, 703–706 (1985).
[Crossref] [PubMed]

Huyet, G.

J. Houlihan, L. Lewis, and G. Huyet, “Feedback induced polarization switching in vertical cavity surface emitting lasers,” Opt. Comm. 232, 391–397 (2004).
[Crossref]

Kannelaud, J.

J. Kannelaud and W. Culshaw, “Coherence effects in gaseous laser with axial magnetic field. II. Experimental,” Phys. Rev. 141, 237–245 (1966).
[Crossref]

Laniepce, S.

Lenornamd, J. M.

A. L. Floch, G. Ropars, J. M. Lenornamd, and R. L. Naour, “Dynamics of laser eigenstates,” Phys. Rev. Lett. 52, 918–921 (1984).
[Crossref]

Lewis, L.

J. Houlihan, L. Lewis, and G. Huyet, “Feedback induced polarization switching in vertical cavity surface emitting lasers,” Opt. Comm. 232, 391–397 (2004).
[Crossref]

May, A. D.

Megret, P.

Michalzik, R.

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
[Crossref]

Naour, R. L.

G. Ropars, A. L. Floch, and R. L. Naour, “Polarization control mechanisms in vectorial bistable lasers for one-frequency systems,” Phys. Rev. A 46, 623–640 (1992).
[Crossref] [PubMed]

A. L. Floch, G. Ropars, J. M. Lenornamd, and R. L. Naour, “Dynamics of laser eigenstates,” Phys. Rev. Lett. 52, 918–921 (1984).
[Crossref]

Ostermann, J. M.

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
[Crossref]

Paddon, P.

Panajotov, K.

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
[Crossref]

M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Megret, and M. Blondel, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett. 28, 1543–1545 (2003).
[Crossref] [PubMed]

Peek, T. H.

T. H. Peek, P. T. Bolwijn, and T. J. Alkemade, “Axial mode number of gas lasers from moving-mirror experiments,” Am. J. Phys. 35, 820–831 (1967).
[Crossref]

Ropars, G.

G. Ropars, A. L. Floch, and R. L. Naour, “Polarization control mechanisms in vectorial bistable lasers for one-frequency systems,” Phys. Rev. A 46, 623–640 (1992).
[Crossref] [PubMed]

A. L. Floch, G. Ropars, J. M. Lenornamd, and R. L. Naour, “Dynamics of laser eigenstates,” Phys. Rev. Lett. 52, 918–921 (1984).
[Crossref]

Sciamanna, M.

Stephan, G.

Thienpont, H.

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
[Crossref]

M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Megret, and M. Blondel, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett. 28, 1543–1545 (2003).
[Crossref] [PubMed]

Unold, H. J.

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
[Crossref]

Veretennicoff, I.

Wan, X. J.

L. G. Fei, S. L. Zhang, and X. J. Wan, “Influence of optical feedback from birefringence external cavity on intensity tuning and polarization of laser,” Chin. Phys. Lett. 21, 1944–1947 (2004).
[Crossref]

Xiong, W.

Zhang, S. L.

L. G. Fei, S. L. Zhang, and X. J. Wan, “Influence of optical feedback from birefringence external cavity on intensity tuning and polarization of laser,” Chin. Phys. Lett. 21, 1944–1947 (2004).
[Crossref]

Am. J. Phys. (1)

T. H. Peek, P. T. Bolwijn, and T. J. Alkemade, “Axial mode number of gas lasers from moving-mirror experiments,” Am. J. Phys. 35, 820–831 (1967).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
[Crossref]

Chin. Phys. Lett. (1)

L. G. Fei, S. L. Zhang, and X. J. Wan, “Influence of optical feedback from birefringence external cavity on intensity tuning and polarization of laser,” Chin. Phys. Lett. 21, 1944–1947 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Comm. (1)

J. Houlihan, L. Lewis, and G. Huyet, “Feedback induced polarization switching in vertical cavity surface emitting lasers,” Opt. Comm. 232, 391–397 (2004).
[Crossref]

Opt. Lett. (1)

Phys. Rev. (1)

J. Kannelaud and W. Culshaw, “Coherence effects in gaseous laser with axial magnetic field. II. Experimental,” Phys. Rev. 141, 237–245 (1966).
[Crossref]

Phys. Rev. A (1)

G. Ropars, A. L. Floch, and R. L. Naour, “Polarization control mechanisms in vectorial bistable lasers for one-frequency systems,” Phys. Rev. A 46, 623–640 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

G. Stephan and D. Hugon, “Light polarization of a quasi-isotropic laser with optical,” Phys. Rev. Lett. 55, 703–706 (1985).
[Crossref] [PubMed]

A. L. Floch, G. Ropars, J. M. Lenornamd, and R. L. Naour, “Dynamics of laser eigenstates,” Phys. Rev. Lett. 52, 918–921 (1984).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup and coordinates system. M1, M2, ME: mirrors; G: stress birefringence element; F: force on G; PZT: piezoelectric transducer; W: glass window anti-reflective coated; BS: beam splitter; D1, D2: photo detectors; P: polarizer; OS: oscilloscope.

Fig. 2.
Fig. 2.

Waveforms of laser intensity modulation and polarization flipping with hysteresis corresponding to the birefringence element phase differences of (a) δ=π/6, (b) δ=5π/18, (c) δ=7π/18, (d) δ=π/2. Upper traces: without a polarizer, lower traces: with a polarizer.

Fig. 3.
Fig. 3.

Measurement curves. (a) Duty ratios of two eigenstates versus the phase difference. (b) The width of hysteresis loop versus the phase difference.

Fig. 4.
Fig. 4.

Illustrations of laser intensity modulation and polarization flipping with hysteresis corresponding to the birefringence element phase differences of (a) δ=π/6, (b) δ=5π/18, (c) δ=7 π/18, (d) δ=π/2. Lower traces: hysteresis loop.

Fig. 5.
Fig. 5.

Theoretical curves. (a) Duty ratios of two eigenstates versus the phase difference. (b) The width of hysteresis loop versus the phase difference.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

[ 1 2 ρ β Δ Φ xy ] + [ c L 1 4 α θ + β θ β Δ Φ 2 xy ] [ 1 2 ( t y t x 1 ) ] > 0 ,
R y y = R 2 + 2 ( R 2 R 3 ) 1 2 ( 1 R 2 ) cos φ f
R y x = R 2 ,
κ cos φ f < ρ β Δ Φ xy + c 2 α L θ + β θ β Δ Φ 2 xy ,
R x x = R 2 + 2 ( R 2 R 3 ) 1 2 ( 1 R 2 ) cos ( φ f 2 δ )
R x y = R 2 ,
κ cos ( φ f 2 δ ) < ρ β Δ Φ xy c 2 α L θ + β θ β Δ Φ 2 xy .

Metrics