Abstract

We report on an optical interference method for transferring periodic microstructures of metal film from a supporting substrate to a receiving substrate by means of five-beam interference of femtosecond laser pulses. Scanning electron microscopy and optical microscopy revealed microstructures with micrometer-order were transferred to the receiving substrate. In the meanwhile, a negative copy of the transferred structures was induced in the metal film on the supporting substrate. The diffraction characteristics of the transferred structures were also evaluated. The present technique allows one-step realization of functional optoelectronic devices.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano, H. Hosono, �??Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses,�?? Appl. Phys. B 71, 119-21 (2000)
    [CrossRef]
  2. J. Si, J. Qiu, J. Zhai, Y. Shen, K. Hirao, �??Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,�?? Appl. Phys. Lett. 80, 359-61 (2002).
    [CrossRef]
  3. G. Qian, J. Guo, M. Wang, J. Si, J. Qiu, and K. Hirao, �??Holographic volume gratings in bulk perylene-orange-doped hybrid inorganic-organic materials by the coherent field of a femtosecond laser,�?? Appl. Phys. Lett. 83, 2327-9 (2003).
    [CrossRef]
  4. Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, Y. Jiang, �??Holographic fabrication of multiple layers of grating inside soda�??lime glass with femtosecond laser pulses,�?? Appl. Phys. Lett. 80, 1508-10 (2002).
    [CrossRef]
  5. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, �??Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,�?? Appl. Phys. Lett. 79, 725-7 (2001).
    [CrossRef]
  6. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, H. Misawa, �??Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,�?? Appl. Phys. Lett. 82, 2758-60 (2003).
    [CrossRef]
  7. Y. Nakata, T. Okada, and M. Maeda, �??Fabrication of dot matrix, comb, and nanowire structures using laser ablation by interfered femtosecond laser beams,�?? Appl. Phys. Lett. 81, 4239-41 (2002); Y. Nakata, T. Okada, M. Maeda, �??Nano-sized hollow bump array generated by single femtosecond laser pulse,�?? Jpn. J. Appl. Phys. 42, L 1452-4 (2003).
    [CrossRef]
  8. K. Kawamura, N. Ito, N. Sarukura, M. Hirano, H. Hosono, �??New adjustment technique for time coincidence of femtosecond laser pulses using third harmonic generation in air and its application to holograph encoding system,�?? Rev. of Sci. Instrum. 73, 1711-4 (2002).
    [CrossRef]
  9. A. A. Maznev, T. F. Crimmins, and K. A. Nelson, �??How to make femtosecond pulses overlap,�?? Opt. Lett. 23, 1378-80 (1998).
    [CrossRef]
  10. S. Mailis, I. Zergioti, G. Koundourakis, A. Ikiades, A. Patentalaki, P. Papakonstantinou, N. A. Vainos, C. Fotakis, �??Etching and printing of diffractive optical microstructures by a femtosecong excimer laser,�?? Appl. Opt. 38, 2301-8 (1999).
    [CrossRef]
  11. I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, C. Fotakis, �??Microdeposition of metal and oxide structures using ultashort laser pulses,�?? Appl. Phys. A 66, 579-82 (1998).
    [CrossRef]
  12. D. B. Chrisey, A. Pique, J. Fitz-Gerald, R. C. Y. Auyeung, R. A. McGill, H. D. Wu, M. Duignan, �??New approach to laser direct writing active and passive mesoscopic circuit elements,�?? Appl. Surf. Sci. 154-155, 593-600 (2000).
    [CrossRef]
  13. R. Bähnisch, W. Gro�?, A. Menschig, �??Single shot, high repetition rate metallic pattern transfer,�?? Microelectron. Eng. 50, 541-6 (2000).
    [CrossRef]
  14. J. Bohandy, B. F. Kim, F. J. Adrian, �??Metal deposition from a supported metal film using an excimer laser,�?? J. Appl. Phys. 60, 1538-9 (1986).
    [CrossRef]
  15. F. J. Adrian, J. Bohandy, B. F. Kim, A. N. Jette, �??A study of the mechanism of metal deposition by laser-induced forward transfer process,�?? J. Vac. Sci. Technol. B 5, 1490-4 (1987).
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, C. Fotakis, �??Microdeposition of metal and oxide structures using ultashort laser pulses,�?? Appl. Phys. A 66, 579-82 (1998).
[CrossRef]

Appl. Phys. B (1)

K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano, H. Hosono, �??Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses,�?? Appl. Phys. B 71, 119-21 (2000)
[CrossRef]

Appl. Phys. Lett. (6)

J. Si, J. Qiu, J. Zhai, Y. Shen, K. Hirao, �??Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,�?? Appl. Phys. Lett. 80, 359-61 (2002).
[CrossRef]

G. Qian, J. Guo, M. Wang, J. Si, J. Qiu, and K. Hirao, �??Holographic volume gratings in bulk perylene-orange-doped hybrid inorganic-organic materials by the coherent field of a femtosecond laser,�?? Appl. Phys. Lett. 83, 2327-9 (2003).
[CrossRef]

Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, Y. Jiang, �??Holographic fabrication of multiple layers of grating inside soda�??lime glass with femtosecond laser pulses,�?? Appl. Phys. Lett. 80, 1508-10 (2002).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, �??Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,�?? Appl. Phys. Lett. 79, 725-7 (2001).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, H. Misawa, �??Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,�?? Appl. Phys. Lett. 82, 2758-60 (2003).
[CrossRef]

Y. Nakata, T. Okada, and M. Maeda, �??Fabrication of dot matrix, comb, and nanowire structures using laser ablation by interfered femtosecond laser beams,�?? Appl. Phys. Lett. 81, 4239-41 (2002); Y. Nakata, T. Okada, M. Maeda, �??Nano-sized hollow bump array generated by single femtosecond laser pulse,�?? Jpn. J. Appl. Phys. 42, L 1452-4 (2003).
[CrossRef]

Appl. Surf. Sci. (1)

D. B. Chrisey, A. Pique, J. Fitz-Gerald, R. C. Y. Auyeung, R. A. McGill, H. D. Wu, M. Duignan, �??New approach to laser direct writing active and passive mesoscopic circuit elements,�?? Appl. Surf. Sci. 154-155, 593-600 (2000).
[CrossRef]

J. Appl. Phys. (1)

J. Bohandy, B. F. Kim, F. J. Adrian, �??Metal deposition from a supported metal film using an excimer laser,�?? J. Appl. Phys. 60, 1538-9 (1986).
[CrossRef]

J. Vac. Sci. Technol. B (1)

F. J. Adrian, J. Bohandy, B. F. Kim, A. N. Jette, �??A study of the mechanism of metal deposition by laser-induced forward transfer process,�?? J. Vac. Sci. Technol. B 5, 1490-4 (1987).
[CrossRef]

Microelectron. Eng. (1)

R. Bähnisch, W. Gro�?, A. Menschig, �??Single shot, high repetition rate metallic pattern transfer,�?? Microelectron. Eng. 50, 541-6 (2000).
[CrossRef]

Opt. Lett. (1)

Rev. of Sci. Instrum. (1)

K. Kawamura, N. Ito, N. Sarukura, M. Hirano, H. Hosono, �??New adjustment technique for time coincidence of femtosecond laser pulses using third harmonic generation in air and its application to holograph encoding system,�?? Rev. of Sci. Instrum. 73, 1711-4 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of transfer of periodic metal film microstructures by multibeam interfered femtosecond laser pulses. a, A receiving substrate is brought onto contact with the metal film deposited on the supporting substrate. b, Five beams interfered femtosecond laser pulses irradiate the metal film by focusing them on the metal film through the receiving substrate. c, The supporting substrate and receiving substrate are separated, transferring a periodic microstructure on the receiving substrate, meanwhile, leaving a periodic microstructure on the metal film.

Fig. 2.
Fig. 2.

Optical microscope and SEM images of the structures on the supporting substrate and on the receiving substrate fabricated by five-beam interference of femtesecond laser pulses. (a) and (c) optical microscope and SEM images of the microstructure on supporting substrate, (b) and (d) optical microscope and SEM images of the microstructure on receiving substrate.

Fig. 3.
Fig. 3.

Diffraction patterns by the microstructures induced on supporting substrate (a) and the microstructures transferred on receiving substrate (b). The averaged diffraction efficiency of first order diffraction spot is 3.73% (a) and 1.93% (b), respectively. (c) Experimental scheme for testing the diffraction by the structures on the supporting substrate and on the receiving substrate.

Metrics