Abstract

The optical breakdown thresholds (OBTs) of typical dielectric and semiconductor materials are measured using double 40-fs laser pulses. By measuring the OBTs with different laser energy and different time delays between the two pulses, we found that the total energy of breakdown decrease for silica and increase for silicon with the increase of the first pulse energy.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M.D. Perry, �??Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses,�?? Phys. Rev. Lett. 74, 2248-2251 (1995)
    [CrossRef] [PubMed]
  2. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry ,�??Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,�?? Phys. Rev. B 53, 1749-1761 (1996)
    [CrossRef]
  3. Qing Liu, Guanghua Cheng, Yishan Wang, Zhao Cheng, Wei Zhao, and Guofu Chen, �??Three-dimensional optical storage in fused silica using modulated femtosecond pulses,�?? Chin. Opt. Lett. 2, 292-294 (2004)
  4. Ming Li, Saipriya Menon, John P. Nibarger, and George N. Gibson, �??Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics,�?? Phys. Rev. Lett. 82, 2394-2397 (1999)
    [CrossRef]
  5. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, �??Laser ablation of dielectrics with temporally shaped femtosecond pulses,�?? App. Phys. Lett. 80, 353-355 (2002)
    [CrossRef]
  6. E. N. Glezer and E. Mazur, �??Ultrafast-laser driven micro-explosions in transparent materials,�?? App. Phys. Lett. 71, 882-884 (1997)
    [CrossRef]
  7. S. I. Kudryashov and V. I. Emel�??yanov, JETP Lett. 94, 94 (2002)
  8. N. T. Nguyen, A. Saliminia, W. Liu, S. L. Chin, R. Valle, �??Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses,�?? Opt. Lett. 28, 1591-1593 (2003)
    [CrossRef] [PubMed]
  9. Chris B. Schaffer, André Brodeur, José F. García, and Eric Mazur, �??Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,�?? Opt. Lett. 26, 93-95 (2001)
    [CrossRef]
  10. J. Bonse, S. Baudach, J. Krüger, W. Kautek, M. Lenzner, �??Femtosecond laser ablation of silicon-modification thresholds and morphology,�?? Appl. Phys. A 74, 19-25 (2002)
    [CrossRef]
  11. Y Cheng, K Sugioka, K Midorikawa, M Masuda, K Toyoda, M Kawachi, K Shihoyama, �??Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,�?? Opt. Lett. 28, 55-57 (2003)
    [CrossRef] [PubMed]
  12. Brodeur and Chin. Cf. A Brodeur And S L Chin, �??Band-Gap Dependence of the Ultrafast White-Light Continuum,�?? Phys.Rev. Lett. 80, 4406-4409 (1998)
    [CrossRef]
  13. V. Koubassov , J.F. Laprise, F. Théberge, E. Förster, R. Sauerbrey, B. Müller, U. Glatzel and S.L. Chin, �??Ultrafast laser-induced melting of glass,�?? Appl. Phys. A, 79, 499-505 (2004)
    [CrossRef]
  14. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, �??Femtosecond Optical Breakdown in Dielectrics,�?? Phys. Rev. Lett. 80, 4076-4079 (1998)
    [CrossRef]
  15. K. Sokolowski-Tinten and D. von der Linde, �??Generation of dense electron-hole plasmas in silicon,�?? Phys. Rev. B 61, 2643-2650 (2000)
    [CrossRef]

App. Phys. Lett. (2)

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, �??Laser ablation of dielectrics with temporally shaped femtosecond pulses,�?? App. Phys. Lett. 80, 353-355 (2002)
[CrossRef]

E. N. Glezer and E. Mazur, �??Ultrafast-laser driven micro-explosions in transparent materials,�?? App. Phys. Lett. 71, 882-884 (1997)
[CrossRef]

Appl. Phys. A (2)

J. Bonse, S. Baudach, J. Krüger, W. Kautek, M. Lenzner, �??Femtosecond laser ablation of silicon-modification thresholds and morphology,�?? Appl. Phys. A 74, 19-25 (2002)
[CrossRef]

V. Koubassov , J.F. Laprise, F. Théberge, E. Förster, R. Sauerbrey, B. Müller, U. Glatzel and S.L. Chin, �??Ultrafast laser-induced melting of glass,�?? Appl. Phys. A, 79, 499-505 (2004)
[CrossRef]

Chin. Opt. Lett. (1)

JETP Lett. (1)

S. I. Kudryashov and V. I. Emel�??yanov, JETP Lett. 94, 94 (2002)

Opt. Lett. (3)

Phys. Rev. B (2)

K. Sokolowski-Tinten and D. von der Linde, �??Generation of dense electron-hole plasmas in silicon,�?? Phys. Rev. B 61, 2643-2650 (2000)
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry ,�??Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,�?? Phys. Rev. B 53, 1749-1761 (1996)
[CrossRef]

Phys. Rev. Lett. (3)

Ming Li, Saipriya Menon, John P. Nibarger, and George N. Gibson, �??Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics,�?? Phys. Rev. Lett. 82, 2394-2397 (1999)
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M.D. Perry, �??Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses,�?? Phys. Rev. Lett. 74, 2248-2251 (1995)
[CrossRef] [PubMed]

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, �??Femtosecond Optical Breakdown in Dielectrics,�?? Phys. Rev. Lett. 80, 4076-4079 (1998)
[CrossRef]

Phys.Rev. Lett. (1)

Brodeur and Chin. Cf. A Brodeur And S L Chin, �??Band-Gap Dependence of the Ultrafast White-Light Continuum,�?? Phys.Rev. Lett. 80, 4406-4409 (1998)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup: 1. half wave plate. 2. polarizer. 3. filter

Fig. 2.
Fig. 2.

The second pulse OBT vs. the time delay between two pulses for silica and silicon. (a) Silica. The fluence of the first pulse is 1.0J/cm2, 1.2J/cm2, 1.4J/cm2, 1.5J/cm2, and 1.6J/cm2, respectively. (b) Silicon. The fluence of the first pulse is 0.06J/cm2, 0.09J/cm2, 0.12J/cm2, 0.14J/cm2, and 0.16J/cm2, respectively.

Fig. 3.
Fig. 3.

Total OBT and the second pulse OBT vs. the fluence of the first pulses for fused silica along with their rescaled theoretical fits based on the modified rate equation [Eq. (3)] with α=4±0.6cm2J and σ6=6×108±0.9 cm-3 ps-1cm2TW6, and τ=60 fs. [4] (a) Time delay is 100fs. (b) Time delay is 300 fs.

Fig. 4.
Fig. 4.

Total OBT and the second pulse OBT vs. fluence of the first pulses for silicon. (a) Time delay is 150fs. (b) Time delay is 300fs.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

dn ( t ) dt = α I ( t ) n ( t ) + σ k I ( t ) k
I ( z , t ) z = [ α 0 + α fca ( z , t ) + β I ( z , t ) ] I ( z , t )
n ( z , t ) t = [ α 0 + 1 2 β I ( z , t ) ] I ( z , t ) ω
dn ( t ) dt = α I ( t ) n ( t ) + σ k I ( t ) k n ( t ) τ
n ( z , t ) t = [ α 0 + 1 2 β I ( z , t ) ] I ( z , t ) ω n ( z , t ) τ

Metrics