Abstract

Free-standing “AMTIR-1” (Ge33As12Se55) chalcogenide glass films have been patterned using a focused ion beam (FIB) to create two-dimensional photonic crystal membranes. The triangular lattices were selected for a photonic bandgap relevant to fiber telecommunications. Optical measurements of transmission spectra as a function of incident angle showed clear signs of Fano resonances, indicating that the structures had strongly modified guided modes.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, �??Out-of-plane scattering in photonic crystal slabs,�?? IEEE Phot. Tech. Lett. 13, 565-567 (2001).
    [CrossRef]
  2. Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, �??Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,�?? Appl. Phys. Lett. 82, 1661-1663 (2003).
    [CrossRef]
  3. A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, �??Low-loss waveguides in ultrafast laser-deposited As2S3 chalcogenide films,�?? J. Opt. Soc. Am. B 20, 1844-1852 (2003).
    [CrossRef]
  4. Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, �??Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,�?? Opt. Express 12, 5140-5145 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5140.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5140.</a>
    [CrossRef] [PubMed]
  5. V. N. Astratov, A. M. Adawi, M. S. Skolnick, V. K. Tikhomirov, V. Lyubin, D. G. Lidzey, M. Ariu, and A. L. Reynolds, �??Opal photonic crystals infiltrated with chalcogenide glasses,�?? Appl. Phys. Lett. 78, 4094-4096 (2001).
    [CrossRef]
  6. B. H. Juárez, S. Rubio, J. Sánchez-Dehesa, and C. López, �??Antimony trisulfide inverted opals: growth, characterization, and photonic properties,�?? Adv. Mat. 14, 1486-1490 (2002).
    [CrossRef]
  7. H.-Y. Lee and T. Yao, �??Wet-etching selectivity of Ag-photodoped AsGeSeS thin films and the fabrication of a planar corrugated one-dimensional photonic crystal by a holographic method,�?? J. Vac. Sci. Tech. B 20, 2017-2023 (2002).
    [CrossRef]
  8. A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, �??Chalcogenide glass-based three-dimensional photonic crystals,�?? Appl. Phys. Lett. 77, 3221-3223 (2000).
    [CrossRef]
  9. A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, �??Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses,�?? Appl. Phys. Lett. 83, 4480-4482 (2003).
    [CrossRef]
  10. S. J. McNab, N. Moll, and Y. A. Vlasov, �??Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,�?? Opt. Express 11, 2927-2939 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927.</a>
    [CrossRef] [PubMed]
  11. L. Vogelaar, W. Nijdam, H. A. G. M. van Wolferen, R. M. de Ridder, F. B. Segerink, E. Flück, L. Kuipers, and N. F. van Hulst, �??Large area photonic crystal slabs for visible light with waveguiding defect structures: fabrication with focused ion beam assisted laser interference lithography,�?? Adv. Mat. 13, 1551-1554 (2001).
    [CrossRef]
  12. G. Dale, R. M. Langford, P. J. S. Ewen, and C. M. Reeves, �??Fabrication of photonic band gap structures in As40S60 by focused ion beam milling,�?? J. Non-Cryst. Solids 266-269, 913-918 (2000).
    [CrossRef]
  13. A. V. Rode, B. Luther-Davies and E. G. Gamaly, �??Ultrafast ablation with high-pulse-rate lasers,�?? Part II: experiments on laser deposition of amorphous carbon films, J. Appl. Phys. 85, 4222-4230 (1999).
  14. S. Fan and J. D. Joannopoulos, �??Analysis of guided resonances in photonic crystal slabs,�?? Phys. Rev. B 65, 235112 (2002).
    [CrossRef]
  15. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, �??Angular and polarization properties of a photonic crystal slab mirror,�?? Opt. Express 12, 1575-1582 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-08-1575.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-08-1575.</a>
    [CrossRef] [PubMed]
  16. V. Lousse and J. P. Vigneron, �??Use of Fano resonances for bistable optical transfer through photonic crystal films,�?? Phys. Rev. B 69, 155106 (2004).
    [CrossRef]

Adv. Mat.

B. H. Juárez, S. Rubio, J. Sánchez-Dehesa, and C. López, �??Antimony trisulfide inverted opals: growth, characterization, and photonic properties,�?? Adv. Mat. 14, 1486-1490 (2002).
[CrossRef]

L. Vogelaar, W. Nijdam, H. A. G. M. van Wolferen, R. M. de Ridder, F. B. Segerink, E. Flück, L. Kuipers, and N. F. van Hulst, �??Large area photonic crystal slabs for visible light with waveguiding defect structures: fabrication with focused ion beam assisted laser interference lithography,�?? Adv. Mat. 13, 1551-1554 (2001).
[CrossRef]

Appl. Phys. Lett.

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, �??Chalcogenide glass-based three-dimensional photonic crystals,�?? Appl. Phys. Lett. 77, 3221-3223 (2000).
[CrossRef]

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, �??Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses,�?? Appl. Phys. Lett. 83, 4480-4482 (2003).
[CrossRef]

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, �??Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,�?? Appl. Phys. Lett. 82, 1661-1663 (2003).
[CrossRef]

V. N. Astratov, A. M. Adawi, M. S. Skolnick, V. K. Tikhomirov, V. Lyubin, D. G. Lidzey, M. Ariu, and A. L. Reynolds, �??Opal photonic crystals infiltrated with chalcogenide glasses,�?? Appl. Phys. Lett. 78, 4094-4096 (2001).
[CrossRef]

IEEE Phot. Tech. Lett.

W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, �??Out-of-plane scattering in photonic crystal slabs,�?? IEEE Phot. Tech. Lett. 13, 565-567 (2001).
[CrossRef]

J. Appl. Phys.

A. V. Rode, B. Luther-Davies and E. G. Gamaly, �??Ultrafast ablation with high-pulse-rate lasers,�?? Part II: experiments on laser deposition of amorphous carbon films, J. Appl. Phys. 85, 4222-4230 (1999).

J. Non-Cryst. Solids

G. Dale, R. M. Langford, P. J. S. Ewen, and C. M. Reeves, �??Fabrication of photonic band gap structures in As40S60 by focused ion beam milling,�?? J. Non-Cryst. Solids 266-269, 913-918 (2000).
[CrossRef]

J. Opt. Soc. Am. B

J. Vac. Sci. Tech. B

H.-Y. Lee and T. Yao, �??Wet-etching selectivity of Ag-photodoped AsGeSeS thin films and the fabrication of a planar corrugated one-dimensional photonic crystal by a holographic method,�?? J. Vac. Sci. Tech. B 20, 2017-2023 (2002).
[CrossRef]

Opt. Express

Phys. Rev. B

S. Fan and J. D. Joannopoulos, �??Analysis of guided resonances in photonic crystal slabs,�?? Phys. Rev. B 65, 235112 (2002).
[CrossRef]

V. Lousse and J. P. Vigneron, �??Use of Fano resonances for bistable optical transfer through photonic crystal films,�?? Phys. Rev. B 69, 155106 (2004).
[CrossRef]

Supplementary Material (1)

» Media 1: GIF (610 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

100×100 µm2 free-standing photonic crystal membrane imaged at normal incidence to reveal long-range order. The holes were milled in horizontal rows.

Fig. 2.
Fig. 2.

High-resolution (<3 nm) close-up of the free-standing photonic crystal slab of Fig. 1, at 45°. The holes were milled sequentially in rows in the direction of the arrow. Successive rows were stacked from left to right.

Fig. 3.
Fig. 3.

A crack through the bottom of a 20×20 µm2 structure fabricated on the same film as Fig. 1. The holes were milled sequentially in rows in the direction of the arrow. Successive rows were stacked from left to right.

Fig. 4.
Fig. 4.

Transmission spectra of a part of the 100×100 µm2 photonic crystal slab, for both linear polarization states and as a function of angle of incidence along the Γ-K direction of the lattice.

Fig. 5.
Fig. 5.

(left) The 20×20 µm2 lattice of Fig. 3 before it was damaged. (right, 625 kB) Movie of transmitted light at 780 nm as the sample was rotated through 0°-40°-0° in steps of 2°. The illustrated frame is at 10° and shows both enhanced and suppressed transmission.

Metrics