Abstract

A new design of an optical resonator for generation of single-photon pulses is proposed. The resonator is made of a cylindrical or spherical piece of a polymer squeezed between two flat dielectric mirrors. The mode characteristics of this resonator are calculated numerically. The numerical analysis is backed by a physical explanation. The decay time and the mode volume of the fundamental mode are sufficient for achieving more than 96% probability of generating a single-photon in a single-mode. The corresponding requirement for the reflectivity of the mirrors (~99.9%) and the losses in the polymer (100 dB/m) are quite modest. The resonator is suitable for single-photon generation based on optical pumping of a single quantum system such as an organic molecule, a diamond nanocrystal, or a semiconductor quantum dot if they are imbedded in the polymer.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Bouwmeester, A. Ekert, and A. Zeilinger eds., The physics of quantum information: quantum cryptography, quantum teleportation, quantum computation (Springer, Berlin , 2000).
    [PubMed]
  2. E. Knill, R. Laflamme and G. J. Milburn. �??A scheme for efficient quantum computation with linear optics,�?? Nature 409 46 (2001).
    [CrossRef] [PubMed]
  3. G. Brassard, N. Lütkenhaus, T. Mor, and B.C. Sanders. �??Limitations on practical quantum cryptography,�?? Phys. Rev. Lett. 85, 1330-1333 (2000).
    [CrossRef] [PubMed]
  4. C. Brunel, B. Lounis, P. Tamarat, and M. Orrit. �??Triggered source of single photons based on controlled single molecule fluorescence,�?? Phys. Rev. Lett. 83, 2722-2725 (1999).
    [CrossRef]
  5. B. Lounis, W.E. Moerner. �??Single photons on demand from a single molecule at room temperature,�?? Nature 407, 491 (2000).
    [CrossRef] [PubMed]
  6. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, A. Imamogùlu,�??A Quantum Dot Single-Photon Turnstile Device,�?? Science 290, 2282-2285 (2000).
    [CrossRef] [PubMed]
  7. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G.S. Solomon, J. Plant, and Y. Yamamoto . �??Efficient Source of Single Photons: A single quantum dot in a microposts microcavity,�?? Phys. Rev. Lett. 89, 233602 (2002).
    [CrossRef] [PubMed]
  8. A. J. Bennett , D. C. Unitt, P. Atkinson, D. A. Ritchie and A. J. Shields, �??High performance single photon sources from photo lithographically defined pillar microcavities,�?? Opt. Express 13, 50-55 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-50. <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-50">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-50</a>.
    [CrossRef] [PubMed]
  9. W.E. Moerner, �??Single-photon sources based on single molecules in solids,�?? New J. Phys. 6, 27 (2004).
    [CrossRef]
  10. A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, �??Room temperature stable single Photon source,�?? Eur. Phys. J. D 18, 191-196 (2002).
    [CrossRef]
  11. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, �??Continuous generation of single photons with controlled waveform in an ion-trap cavity system,�?? Nature 431, 1075-1078 (2004).
    [CrossRef] [PubMed]
  12. Y. Ben, Z. Hao, C. Sun, F. Ren, N. Tan and Y. Luo, �??Three-dimensional photonic-crystal cavity with an embedded quantum dot as a nonclassical light emitter,�?? Opt. Express 12, 5146-5152 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5146">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5146</a>. http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5146.
    [CrossRef] [PubMed]
  13. W.L. Barnes,a, G. Björk2, J.M. Gérard, P. Jonsson, J.A.E. Wasey, P.T. Worthing, and V. Zwiller, �??Solid-state single photon sources: light collection strategies�??, Eur. Phys. J. D 18, 197�??210 (2002).
    [CrossRef]
  14. For a review see K.J. Vahala, �??Optical microcavities,�?? Nature 424, 840-846 (2003).
    [CrossRef]
  15. J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto. �??Optimization of three-dimensional microposts microcavities for cavity quantum electrodynamics,�?? Phys. Rev. A 66, 023808 (2002).
    [CrossRef]
  16. M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto. �??Three-dimensionally confined modes in micropost microcavities: Quality Factors and Purcell Factors,�?? IEEE J. Quantum. Electron. 38, 170-177 (2002).
    [CrossRef]
  17. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, H. J. Kimble, �??Deterministic generation of single photons from one atom trapped in a cavity,�?? Science 303, 1992-1994 (2004).
    [CrossRef] [PubMed]
  18. V.B. Braginsky, M.L. Gorodetsky, and V.S. Ilchenko. �??Quality-factor and nonlinear properties of optical whispering-gallery modes,�?? Phys. Lett. A 137, 393 (1989).
    [CrossRef]
  19. L. Pang, Y. Shen, K. Tetz and Y. Fainman, �??PMMA quantum dots composites fabricated via use of pre-polymerization,�?? Opt. Express 13, 44-49 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-44">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-44</a> . http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-44 .
    [CrossRef] [PubMed]
  20. F. De Martini, G. Di Giuseppe, and M. Marrocco. �??Single-mode generation of quantum photon states by excited single molecules in a microcavity trap,�?? Phys. Rev. Lett. 76, 900-903 (1996).
    [CrossRef] [PubMed]
  21. B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, J. L. Pelouard, �?? High-Q wet-etched GaAs microdisks containing InAs quantum boxes,�?? Appl. Phys.Lett. 75, 1908�??1910 (1999).
    [CrossRef]
  22. T. Plakhotnik, E.A. Donley, U.P. Wild, �??Single molecule spectroscopy�??, Annu. Rev. Phys. Chem. 48181-212 (1997).
    [CrossRef] [PubMed]
  23. X. S. Xie, J.K. Trautman, �??Optical studies of single molecules at room temperatures�??, Annu. Rev. Phys. Chem. 49, 441-480 (1998).
    [CrossRef]
  24. M. Ehrl, F.W. Deeg, C. Bräuchle, O. Franke, A. Sobbi, G. Schulz-Ekloff, D. Wöhrle, �??High-temperature non-photochemical hole-burning phthalocyanine-Zinc derivatives embedded in hydrated AlPO4-5 molecular sieve�??, J. Phys. Chem. 98, 47-52 (1994).
    [CrossRef]
  25. L. Eldada, L. W. Shacklette, �??Advances in Polymer Integrated Optics,�?? IEEE J. Selected Topics in Quantum Electron. 6, 54-68 (2000).
    [CrossRef]

Annu. Rev. Phys. Chem. (2)

T. Plakhotnik, E.A. Donley, U.P. Wild, �??Single molecule spectroscopy�??, Annu. Rev. Phys. Chem. 48181-212 (1997).
[CrossRef] [PubMed]

X. S. Xie, J.K. Trautman, �??Optical studies of single molecules at room temperatures�??, Annu. Rev. Phys. Chem. 49, 441-480 (1998).
[CrossRef]

Appl. Phys.Lett. (1)

B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, J. L. Pelouard, �?? High-Q wet-etched GaAs microdisks containing InAs quantum boxes,�?? Appl. Phys.Lett. 75, 1908�??1910 (1999).
[CrossRef]

Eur. Phys. J. D (2)

A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, �??Room temperature stable single Photon source,�?? Eur. Phys. J. D 18, 191-196 (2002).
[CrossRef]

W.L. Barnes,a, G. Björk2, J.M. Gérard, P. Jonsson, J.A.E. Wasey, P.T. Worthing, and V. Zwiller, �??Solid-state single photon sources: light collection strategies�??, Eur. Phys. J. D 18, 197�??210 (2002).
[CrossRef]

IEEE J. Quantum Electron (1)

L. Eldada, L. W. Shacklette, �??Advances in Polymer Integrated Optics,�?? IEEE J. Selected Topics in Quantum Electron. 6, 54-68 (2000).
[CrossRef]

IEEE J. Quantum. Electron. (1)

M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto. �??Three-dimensionally confined modes in micropost microcavities: Quality Factors and Purcell Factors,�?? IEEE J. Quantum. Electron. 38, 170-177 (2002).
[CrossRef]

J. Phys. Chem. (1)

M. Ehrl, F.W. Deeg, C. Bräuchle, O. Franke, A. Sobbi, G. Schulz-Ekloff, D. Wöhrle, �??High-temperature non-photochemical hole-burning phthalocyanine-Zinc derivatives embedded in hydrated AlPO4-5 molecular sieve�??, J. Phys. Chem. 98, 47-52 (1994).
[CrossRef]

Nature (4)

For a review see K.J. Vahala, �??Optical microcavities,�?? Nature 424, 840-846 (2003).
[CrossRef]

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, �??Continuous generation of single photons with controlled waveform in an ion-trap cavity system,�?? Nature 431, 1075-1078 (2004).
[CrossRef] [PubMed]

E. Knill, R. Laflamme and G. J. Milburn. �??A scheme for efficient quantum computation with linear optics,�?? Nature 409 46 (2001).
[CrossRef] [PubMed]

B. Lounis, W.E. Moerner. �??Single photons on demand from a single molecule at room temperature,�?? Nature 407, 491 (2000).
[CrossRef] [PubMed]

New J. Phys. (1)

W.E. Moerner, �??Single-photon sources based on single molecules in solids,�?? New J. Phys. 6, 27 (2004).
[CrossRef]

Opt. Express (3)

Phys. Lett. A (1)

V.B. Braginsky, M.L. Gorodetsky, and V.S. Ilchenko. �??Quality-factor and nonlinear properties of optical whispering-gallery modes,�?? Phys. Lett. A 137, 393 (1989).
[CrossRef]

Phys. Rev. A (1)

J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto. �??Optimization of three-dimensional microposts microcavities for cavity quantum electrodynamics,�?? Phys. Rev. A 66, 023808 (2002).
[CrossRef]

Phys. Rev. Lett. (4)

F. De Martini, G. Di Giuseppe, and M. Marrocco. �??Single-mode generation of quantum photon states by excited single molecules in a microcavity trap,�?? Phys. Rev. Lett. 76, 900-903 (1996).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G.S. Solomon, J. Plant, and Y. Yamamoto . �??Efficient Source of Single Photons: A single quantum dot in a microposts microcavity,�?? Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef] [PubMed]

G. Brassard, N. Lütkenhaus, T. Mor, and B.C. Sanders. �??Limitations on practical quantum cryptography,�?? Phys. Rev. Lett. 85, 1330-1333 (2000).
[CrossRef] [PubMed]

C. Brunel, B. Lounis, P. Tamarat, and M. Orrit. �??Triggered source of single photons based on controlled single molecule fluorescence,�?? Phys. Rev. Lett. 83, 2722-2725 (1999).
[CrossRef]

Science (2)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, A. Imamogùlu,�??A Quantum Dot Single-Photon Turnstile Device,�?? Science 290, 2282-2285 (2000).
[CrossRef] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, H. J. Kimble, �??Deterministic generation of single photons from one atom trapped in a cavity,�?? Science 303, 1992-1994 (2004).
[CrossRef] [PubMed]

Other (1)

D. Bouwmeester, A. Ekert, and A. Zeilinger eds., The physics of quantum information: quantum cryptography, quantum teleportation, quantum computation (Springer, Berlin , 2000).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig.1.
Fig.1.

istribution the electric field (|Ex |) oscillating at the resonance frequency of the microcavity is shown as a false color image. The color bar on the right shows the color code for the relative amplitude of the electric field. The relative values of Ex2n2 are shown for z=0 (upper-right panel) and r=0 (lower-right panel). Thirty pairs of the dielectric layers form two mirrors (with 15 pairs for each mirror). The alternating refraction indexes of the layers are 2.4 (TiO2) and 1.46 (SiO2). Their thicknesses are t 1=0.06 µm and t 2=0.1 µm (for the layers with the smaller refraction index). The polymer spacer has a refraction index of np =1.45 and a thickness of s=0.24 µm. Two possible shapes of the polymer spacer (cylindrical and elliptical) are shown. The influence of the spacer shape on the cavity characteristics was marginal. The cavity characteristics have been studied as a function of the diameter of the polymer spacer (see Table 1). For the simulation results presented in this figure D=0.8 µm.

Tables (1)

Tables Icon

Table 1. Characteristics of the Micro Resonator as Calculated by 3D-FDTD Method

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F = 3 c 3 τ 4 π V m ν 2 n 3 ,
V m = E 2 ( r ) n 2 ( r ) d r 3 max [ E 2 ( r ) n 2 ( r ) ]
P m = F 1 + F

Metrics