Abstract

A two-dimensional photonic crystal channel-drop filter is proposed. This device has two high group velocity waveguides that are selectively coupled by a single, low group velocity intermediate waveguide section. It exhibits computed quality factors as high as 1300, and directional dropping efficiencies as high as 90%.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, �??Microring resonator channel dropping filters,�?? J. Lightwave Technol. 15, 998�??1005 (1997).
    [CrossRef]
  2. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, �??Ultra-compact Si-SiO microring resonator optical channel dropping filters,�?? IEEE Photon. Technol. Lett. 10, 549�??551 (1998).
    [CrossRef]
  3. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, �??Channel drop filters in photonic crystals,�?? Opt. Express 3, 4�??11 (1998), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4</a>.
    [CrossRef] [PubMed]
  4. B-K. Min, J-E. Kim, and H. Y. Park, �??Channel drop filters using resonant tunneling processes in two-dimensional triangular lattice photonic crystal slabs,�?? Opt. Commun. 237, 59�??63 (2004).
    [CrossRef]
  5. T. Asano, M. Mochizuki, S. Noda, M. Okano, and M. Imada, �??A channel drop filter using a single defect in a 2-D photonic crystal slab- defect engineering with respect to polarization mode and ratio of emissions from upper and lower sides,�?? J. Lightwave Technol. 21, 1370�??1376 (2003).
    [CrossRef]
  6. H. Takano, Y. Akahane, T. Asano, and Susumu Noda, �??In-plane-type channel drop filter in a two-dimensional photonic crystal slab,�?? Appl. Phys. Lett. 84, 2226�??2228 (2004).
    [CrossRef]
  7. C. Grillet, �??Microphotonic devices based on Two Dimensionnal Photonic Crystals for optical integration�??, Thesis, Ecole Centrale de Lyon, Ecully, France,(2003).
  8. M. Notomi, A. Shinya, E. Kuramochi, and H-Y. Ryu, �??Waveguides, resonators and their coupled elements in photonic crystal slabs,�?? Opt. Express 12, 1551�??1561 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1551">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1551</a>.
    [CrossRef] [PubMed]
  9. P. Viktorovitch, �??Photonic Crystals: basic concepts and applications,�?? in Nanophotonics (in french)(Herms-Lavoisier, Paris, under press).
  10. X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. d�??Yerville, D. Cassagne, and C. Jouanin, �??Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,�?? Appl. Phys. Lett. 79, 2312�??2315 (2001).
    [CrossRef]
  11. M. Loncar, D. Nedeljkovic, T. P. Pearsall, J. Vuckovic, A. Scherer, S. Kuchinsky, and D. C. Allan, �??Experimental and theoretical confirmation of Bloch-mode light propagation in planar photonic crystal waveguides,�?? Appl. Phys. Lett. 80, 1689�??1691 (2002).
    [CrossRef]
  12. X. Letartre, J. Mouette, J. L. Leclercq, P. Rojo Romeo, C. Seassal, and P. Viktorovitch, �??Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures,�?? J. Lightwave Technol. 21, 1691�??1699 (2003).
    [CrossRef]
  13. The FSR is derived following the same approach as in the traditional case of a Fabry-Perot resonator operating in a linear regime of the dispersion characteristics. It is a first order approximation around an extreme, where the FSR may incidently be strictly zero, as explained in the coming up section.
  14. S. G. Johnson, and J. D. Joannopoulos, �??Bloch-iterative frequency-domain methods for Maxwell�??s equations in a planewave basis,�?? Opt. Express 8, 173�??190 (2001), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>.
    [CrossRef] [PubMed]
  15. C. Sauvan, G. Lecamp, P. Lalanne and J.P. Hugonin, �??Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities,�?? Opt. Express 13, 245�??255 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-245">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-245</a>.
    [CrossRef] [PubMed]
  16. Y. Akahane, T. Asano, B-S. Song, and S. Noda, �??High-Q photonic nanocavity in a two-dimensional photonic crystal,�?? Nature 425, 944�??947 (2003).
    [CrossRef] [PubMed]

Appl. Phys. Lett. (3)

H. Takano, Y. Akahane, T. Asano, and Susumu Noda, �??In-plane-type channel drop filter in a two-dimensional photonic crystal slab,�?? Appl. Phys. Lett. 84, 2226�??2228 (2004).
[CrossRef]

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. L. d�??Yerville, D. Cassagne, and C. Jouanin, �??Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,�?? Appl. Phys. Lett. 79, 2312�??2315 (2001).
[CrossRef]

M. Loncar, D. Nedeljkovic, T. P. Pearsall, J. Vuckovic, A. Scherer, S. Kuchinsky, and D. C. Allan, �??Experimental and theoretical confirmation of Bloch-mode light propagation in planar photonic crystal waveguides,�?? Appl. Phys. Lett. 80, 1689�??1691 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, �??Ultra-compact Si-SiO microring resonator optical channel dropping filters,�?? IEEE Photon. Technol. Lett. 10, 549�??551 (1998).
[CrossRef]

J. Lightwave Technol. (3)

Nature (1)

Y. Akahane, T. Asano, B-S. Song, and S. Noda, �??High-Q photonic nanocavity in a two-dimensional photonic crystal,�?? Nature 425, 944�??947 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

B-K. Min, J-E. Kim, and H. Y. Park, �??Channel drop filters using resonant tunneling processes in two-dimensional triangular lattice photonic crystal slabs,�?? Opt. Commun. 237, 59�??63 (2004).
[CrossRef]

Opt. Express (4)

Other (3)

The FSR is derived following the same approach as in the traditional case of a Fabry-Perot resonator operating in a linear regime of the dispersion characteristics. It is a first order approximation around an extreme, where the FSR may incidently be strictly zero, as explained in the coming up section.

P. Viktorovitch, �??Photonic Crystals: basic concepts and applications,�?? in Nanophotonics (in french)(Herms-Lavoisier, Paris, under press).

C. Grillet, �??Microphotonic devices based on Two Dimensionnal Photonic Crystals for optical integration�??, Thesis, Ecole Centrale de Lyon, Ecully, France,(2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Directional channel-drop filter principle.

Fig. 2.
Fig. 2.

Dispersion characteristics of the directional channel-drop filter.

Fig. 3.
Fig. 3.

Directional dropping conditions using a slow Bloch mode in a resonator close to the extreme of its dispersion characteristic.

Fig. 4.
Fig. 4.

Photonic Crystal directional channel-drop filter.

Fig. 5.
Fig. 5.

Dispersion characteristics of the Photonic Crystal directional channel-drop filter, and primitive cell used for the calculation.

Fig. 6.
Fig. 6.

Spectral response of a short resonator (8 missing holes): two SBM Fabry-Perot resonances, 5.6 nm apart, are observed. The corresponding magnetic field distributions are also shown. The vertical black line stands for the symmetry axis orthogonal to the resonator

Fig. 7.
Fig. 7.

Spectral characteristic of a 4.50 µm (10 missing holes) PC directional channel-drop filter, for an injection in Port #1. Refined tuning of this particular device was achieved by shifting the holes at the ends of the resonator.

Fig. 8.
Fig. 8.

Spectral characteristic of the optimized (20 missing holes) PC directional channel-drop filter, for an injection in Port #1. No shift of the holes at the ends of the resonator was necessary.

Fig. 9.
Fig. 9.

Magnetic field distribution of the PC directional channel-drop filter, for an injection in Port #1.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Q = ω τ = 2 π c λ τ = λ δ λ
δ λ = λ 2 2 π c τ
L m = ( α τ 2 ) 1 2
k ( ω ) = p π L e f f
F S R = π 2 α 2 L e f f 2

Metrics