Abstract

An improved quantum key distribution test system operating at clock rates of up to 2GHz using a specially adapted commercially-available silicon single-photon counting module is presented. The use of an enhanced detector has improved the fiber-based quantum key distribution test system performance in terms of transmission distance and quantum bit error rate.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proc. Of IEEE Inter. Conf. on Computer Systems and Signal Processing, Bangalore, Kartarna, (Institute of Electrical and Electronics Engineers, New York, 1984), 175–179.
  2. P.W. Shor and J. Preskill, “Simple Proof of Security of the BB84 Quantum Key Distribution Protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
    [CrossRef] [PubMed]
  3. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41.1–41.8 (2002).
    [CrossRef]
  4. C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. 84, 3762–3764 (2004).
  5. J. G. Rarity, P. R. Tapster, and P. M. Gorman, “Practical free-space quantum key distribution over 10km in daylight and at night,” J. Mod. Phys. 48, 1887–1901 (2001).
  6. C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature 419, 450–450 (2002).
    [CrossRef] [PubMed]
  7. K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004).
    [CrossRef]
  8. J.C. Bienfang, A.J. Gross, A. Mink, B.J. Hershman, A. Nakassis, X. Tang, R. Lu, D.H. Su, C.W. Clark, C.J. Williams, E.W. Hagley, and J. Wen, “Quantum key distribution with 1.25 Gbps clock synchronization,” Opt. Express 12, 2011–2016 (2004).
    [CrossRef] [PubMed]
  9. C.H. Bennett, “Quantum Cryptography Using Any Two Nonorthogonal States,” Phys. Rev. Lett. 68, 3121–3124 (1992).
    [CrossRef] [PubMed]
  10. P. D. Townsend, “Experimental investigation of the perfromance limits for first telecommunications-window quantum cryptography systems,” Photon. Technol. Lett. 10, 1048–1050 (1998).
    [CrossRef]
  11. S. D. Cova, M. Ghioni, and F. Zappa, “Circuit for high precision detection of the time of arrival of photons falling on single photon avalanche diodes,” US pat. 6,384,663 B2, May 7, 2002; (prior. 9 March 2000)
  12. I. Rech, I. Labanca, M. Ghioni, and S. Cova, “Circuit for improving the photon-timing performance of Single-Photon Counting Modules,” (submitted to) Rev. Sci. Instrum.
    [PubMed]
  13. A. Spinelli and A. L. Lacaita, “Physics and Numerical Simulation of Single Photon Avalanche Diodes”, IEEE Trans. Electron. Devices 44, 1931–1943 (1997).
    [CrossRef]
  14. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
    [CrossRef] [PubMed]
  15. C. H. Bennett, G. Brassard, and J. M. Robert, “Privacy amplification by public discussion,” SIAM J. Comp,  17, 210–229 (1988)
    [CrossRef]
  16. M. Ghioni, S. D. Cova, A. Lacaita, and G. Ripamonti, “New silicon epitaxial avalanche diode for single-photon timing at room temperature,” Electron. Lett. 24, 1476–1477 (1988).
    [CrossRef]

2004 (3)

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. 84, 3762–3764 (2004).

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004).
[CrossRef]

J.C. Bienfang, A.J. Gross, A. Mink, B.J. Hershman, A. Nakassis, X. Tang, R. Lu, D.H. Su, C.W. Clark, C.J. Williams, E.W. Hagley, and J. Wen, “Quantum key distribution with 1.25 Gbps clock synchronization,” Opt. Express 12, 2011–2016 (2004).
[CrossRef] [PubMed]

2002 (2)

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature 419, 450–450 (2002).
[CrossRef] [PubMed]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41.1–41.8 (2002).
[CrossRef]

2001 (1)

J. G. Rarity, P. R. Tapster, and P. M. Gorman, “Practical free-space quantum key distribution over 10km in daylight and at night,” J. Mod. Phys. 48, 1887–1901 (2001).

2000 (2)

P.W. Shor and J. Preskill, “Simple Proof of Security of the BB84 Quantum Key Distribution Protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
[CrossRef] [PubMed]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[CrossRef] [PubMed]

1998 (1)

P. D. Townsend, “Experimental investigation of the perfromance limits for first telecommunications-window quantum cryptography systems,” Photon. Technol. Lett. 10, 1048–1050 (1998).
[CrossRef]

1997 (1)

A. Spinelli and A. L. Lacaita, “Physics and Numerical Simulation of Single Photon Avalanche Diodes”, IEEE Trans. Electron. Devices 44, 1931–1943 (1997).
[CrossRef]

1992 (1)

C.H. Bennett, “Quantum Cryptography Using Any Two Nonorthogonal States,” Phys. Rev. Lett. 68, 3121–3124 (1992).
[CrossRef] [PubMed]

1988 (2)

C. H. Bennett, G. Brassard, and J. M. Robert, “Privacy amplification by public discussion,” SIAM J. Comp,  17, 210–229 (1988)
[CrossRef]

M. Ghioni, S. D. Cova, A. Lacaita, and G. Ripamonti, “New silicon epitaxial avalanche diode for single-photon timing at room temperature,” Electron. Lett. 24, 1476–1477 (1988).
[CrossRef]

Bennett, C. H.

C. H. Bennett, G. Brassard, and J. M. Robert, “Privacy amplification by public discussion,” SIAM J. Comp,  17, 210–229 (1988)
[CrossRef]

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proc. Of IEEE Inter. Conf. on Computer Systems and Signal Processing, Bangalore, Kartarna, (Institute of Electrical and Electronics Engineers, New York, 1984), 175–179.

Bennett, C.H.

C.H. Bennett, “Quantum Cryptography Using Any Two Nonorthogonal States,” Phys. Rev. Lett. 68, 3121–3124 (1992).
[CrossRef] [PubMed]

Bienfang, J.C.

Brassard, G.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, and J. M. Robert, “Privacy amplification by public discussion,” SIAM J. Comp,  17, 210–229 (1988)
[CrossRef]

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proc. Of IEEE Inter. Conf. on Computer Systems and Signal Processing, Bangalore, Kartarna, (Institute of Electrical and Electronics Engineers, New York, 1984), 175–179.

Buller, G. S.

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004).
[CrossRef]

Clark, C.W.

Cova, S.

I. Rech, I. Labanca, M. Ghioni, and S. Cova, “Circuit for improving the photon-timing performance of Single-Photon Counting Modules,” (submitted to) Rev. Sci. Instrum.
[PubMed]

Cova, S. D.

M. Ghioni, S. D. Cova, A. Lacaita, and G. Ripamonti, “New silicon epitaxial avalanche diode for single-photon timing at room temperature,” Electron. Lett. 24, 1476–1477 (1988).
[CrossRef]

S. D. Cova, M. Ghioni, and F. Zappa, “Circuit for high precision detection of the time of arrival of photons falling on single photon avalanche diodes,” US pat. 6,384,663 B2, May 7, 2002; (prior. 9 March 2000)

Fernandez, V.

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004).
[CrossRef]

Ghioni, M.

M. Ghioni, S. D. Cova, A. Lacaita, and G. Ripamonti, “New silicon epitaxial avalanche diode for single-photon timing at room temperature,” Electron. Lett. 24, 1476–1477 (1988).
[CrossRef]

I. Rech, I. Labanca, M. Ghioni, and S. Cova, “Circuit for improving the photon-timing performance of Single-Photon Counting Modules,” (submitted to) Rev. Sci. Instrum.
[PubMed]

S. D. Cova, M. Ghioni, and F. Zappa, “Circuit for high precision detection of the time of arrival of photons falling on single photon avalanche diodes,” US pat. 6,384,663 B2, May 7, 2002; (prior. 9 March 2000)

Gisin, N.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41.1–41.8 (2002).
[CrossRef]

Gobby, C.

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. 84, 3762–3764 (2004).

Gordon, K. J.

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004).
[CrossRef]

Gorman, P. M.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature 419, 450–450 (2002).
[CrossRef] [PubMed]

J. G. Rarity, P. R. Tapster, and P. M. Gorman, “Practical free-space quantum key distribution over 10km in daylight and at night,” J. Mod. Phys. 48, 1887–1901 (2001).

Gross, A.J.

Guinnard, O.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41.1–41.8 (2002).
[CrossRef]

Hagley, E.W.

Halder, M.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature 419, 450–450 (2002).
[CrossRef] [PubMed]

Hershman, B.J.

Kurtsiefer, C.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature 419, 450–450 (2002).
[CrossRef] [PubMed]

Labanca, I.

I. Rech, I. Labanca, M. Ghioni, and S. Cova, “Circuit for improving the photon-timing performance of Single-Photon Counting Modules,” (submitted to) Rev. Sci. Instrum.
[PubMed]

Lacaita, A.

M. Ghioni, S. D. Cova, A. Lacaita, and G. Ripamonti, “New silicon epitaxial avalanche diode for single-photon timing at room temperature,” Electron. Lett. 24, 1476–1477 (1988).
[CrossRef]

Lacaita, A. L.

A. Spinelli and A. L. Lacaita, “Physics and Numerical Simulation of Single Photon Avalanche Diodes”, IEEE Trans. Electron. Devices 44, 1931–1943 (1997).
[CrossRef]

Lu, R.

Lütkenhaus, N.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[CrossRef] [PubMed]

Mink, A.

Mor, T.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[CrossRef] [PubMed]

Nakassis, A.

Preskill, J.

P.W. Shor and J. Preskill, “Simple Proof of Security of the BB84 Quantum Key Distribution Protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
[CrossRef] [PubMed]

Rarity, J. G.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature 419, 450–450 (2002).
[CrossRef] [PubMed]

J. G. Rarity, P. R. Tapster, and P. M. Gorman, “Practical free-space quantum key distribution over 10km in daylight and at night,” J. Mod. Phys. 48, 1887–1901 (2001).

Rech, I.

I. Rech, I. Labanca, M. Ghioni, and S. Cova, “Circuit for improving the photon-timing performance of Single-Photon Counting Modules,” (submitted to) Rev. Sci. Instrum.
[PubMed]

Ribordy, G.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41.1–41.8 (2002).
[CrossRef]

Ripamonti, G.

M. Ghioni, S. D. Cova, A. Lacaita, and G. Ripamonti, “New silicon epitaxial avalanche diode for single-photon timing at room temperature,” Electron. Lett. 24, 1476–1477 (1988).
[CrossRef]

Robert, J. M.

C. H. Bennett, G. Brassard, and J. M. Robert, “Privacy amplification by public discussion,” SIAM J. Comp,  17, 210–229 (1988)
[CrossRef]

Sanders, B. C.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[CrossRef] [PubMed]

Shields, A. J.

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. 84, 3762–3764 (2004).

Shor, P.W.

P.W. Shor and J. Preskill, “Simple Proof of Security of the BB84 Quantum Key Distribution Protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
[CrossRef] [PubMed]

Spinelli, A.

A. Spinelli and A. L. Lacaita, “Physics and Numerical Simulation of Single Photon Avalanche Diodes”, IEEE Trans. Electron. Devices 44, 1931–1943 (1997).
[CrossRef]

Stucki, D.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41.1–41.8 (2002).
[CrossRef]

Su, D.H.

Tang, X.

Tapster, P. R.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature 419, 450–450 (2002).
[CrossRef] [PubMed]

J. G. Rarity, P. R. Tapster, and P. M. Gorman, “Practical free-space quantum key distribution over 10km in daylight and at night,” J. Mod. Phys. 48, 1887–1901 (2001).

Townsend, P. D.

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004).
[CrossRef]

P. D. Townsend, “Experimental investigation of the perfromance limits for first telecommunications-window quantum cryptography systems,” Photon. Technol. Lett. 10, 1048–1050 (1998).
[CrossRef]

Weinfurter, H.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature 419, 450–450 (2002).
[CrossRef] [PubMed]

Wen, J.

Williams, C.J.

Yuan, Z. L.

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. 84, 3762–3764 (2004).

Zappa, F.

S. D. Cova, M. Ghioni, and F. Zappa, “Circuit for high precision detection of the time of arrival of photons falling on single photon avalanche diodes,” US pat. 6,384,663 B2, May 7, 2002; (prior. 9 March 2000)

Zarda, P.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature 419, 450–450 (2002).
[CrossRef] [PubMed]

Zbinden, H.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41.1–41.8 (2002).
[CrossRef]

Appl. Phys. (1)

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. 84, 3762–3764 (2004).

Electron. Lett. (1)

M. Ghioni, S. D. Cova, A. Lacaita, and G. Ripamonti, “New silicon epitaxial avalanche diode for single-photon timing at room temperature,” Electron. Lett. 24, 1476–1477 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004).
[CrossRef]

IEEE Trans. Electron. Devices (1)

A. Spinelli and A. L. Lacaita, “Physics and Numerical Simulation of Single Photon Avalanche Diodes”, IEEE Trans. Electron. Devices 44, 1931–1943 (1997).
[CrossRef]

J. Mod. Phys. (1)

J. G. Rarity, P. R. Tapster, and P. M. Gorman, “Practical free-space quantum key distribution over 10km in daylight and at night,” J. Mod. Phys. 48, 1887–1901 (2001).

Nature (1)

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature 419, 450–450 (2002).
[CrossRef] [PubMed]

New J. Phys. (1)

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41.1–41.8 (2002).
[CrossRef]

Opt. Express (1)

Photon. Technol. Lett. (1)

P. D. Townsend, “Experimental investigation of the perfromance limits for first telecommunications-window quantum cryptography systems,” Photon. Technol. Lett. 10, 1048–1050 (1998).
[CrossRef]

Phys. Rev. Lett. (3)

C.H. Bennett, “Quantum Cryptography Using Any Two Nonorthogonal States,” Phys. Rev. Lett. 68, 3121–3124 (1992).
[CrossRef] [PubMed]

P.W. Shor and J. Preskill, “Simple Proof of Security of the BB84 Quantum Key Distribution Protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
[CrossRef] [PubMed]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[CrossRef] [PubMed]

SIAM J. Comp (1)

C. H. Bennett, G. Brassard, and J. M. Robert, “Privacy amplification by public discussion,” SIAM J. Comp,  17, 210–229 (1988)
[CrossRef]

Other (3)

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proc. Of IEEE Inter. Conf. on Computer Systems and Signal Processing, Bangalore, Kartarna, (Institute of Electrical and Electronics Engineers, New York, 1984), 175–179.

S. D. Cova, M. Ghioni, and F. Zappa, “Circuit for high precision detection of the time of arrival of photons falling on single photon avalanche diodes,” US pat. 6,384,663 B2, May 7, 2002; (prior. 9 March 2000)

I. Rech, I. Labanca, M. Ghioni, and S. Cova, “Circuit for improving the photon-timing performance of Single-Photon Counting Modules,” (submitted to) Rev. Sci. Instrum.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Basic quantum key distribution system experimental arrangement. PPG: Pulse pattern generator, NRZ: Non return to zero pulse pattern, V0 & V1 are the high-speed VCSELs and driver boards, SPCM: Single-photon counting module, SMF: Single mode fiber.

Fig. 2.
Fig. 2.

Timing jitter full width at half maximum of the standard SPCM SPAD and the SPCM with modified output circuitry.

Fig. 3.
Fig. 3.

Shift of the peak position of the standard SPCM SPAD and the SPCM with modified output circuitry.

Fig. 4.
Fig. 4.

QBER versus QKD system clock frequency at fixed fiber distance of 6.55 km of standard telecommunications fiber.

Fig. 5.
Fig. 5.

QBER versus fiber distance at a clock frequency of 2GHz. The points filled in black are taken with the full fiber transmission distance. The white points were measured using optical attenuation to simulate the given distances.

Metrics