Abstract

An improved quantum key distribution test system operating at clock rates of up to 2GHz using a specially adapted commercially-available silicon single-photon counting module is presented. The use of an enhanced detector has improved the fiber-based quantum key distribution test system performance in terms of transmission distance and quantum bit error rate.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. H. Bennett and G. Brassard, �??Quantum cryptography: Public key distribution and coin tossing,�?? in Proc. Of IEEE Inter. Conf. on Computer Systems and Signal Processing, Bangalore, Kartarna, (Institute of Electrical and Electronics Engineers, New York, 1984), 175-179.
  2. P.W. Shor and J. Preskill, �??Simple Proof of Security of the BB84 Quantum Key Distribution Protocol,�?? Phys. Rev. Lett. 85, 441-444 (2000).
    [CrossRef] [PubMed]
  3. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy and H. Zbinden, �??Quantum key distribution over 67 km with a plug & play system,�?? New J. Phys. 4, 41.1-41.8 (2002).
    [CrossRef]
  4. C. Gobby, Z. L. Yuan and A. J. Shields, �??Quantum key distribution over 122 km of standard telecom fiber,�?? Appl. Phys. 84, 3762-3764 (2004).
  5. J. G. Rarity, P. R. Tapster and P. M. Gorman, �??Practical free-space quantum key distribution over 10km in daylight and at night,�?? J. Mod. Phys. 48, 1887-1901 (2001).
  6. C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster and J. G. Rarity, �??A step towards global key distribution,�?? Nature 419, 450-450 (2002).
    [CrossRef] [PubMed]
  7. K. J. Gordon, V. Fernandez, P. D. Townsend and G. S. Buller, �??A short wavelength gigahertz clocked fiberoptic quantum key distribution system,�?? IEEE J. Quantum Electron. 40, 900-908 (2004).
    [CrossRef]
  8. J. C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lu, D. H. Su, C. W. Clark, C. J. Williams, E. W. Hagley, and J. Wen, �??Quantum key distribution with 1.25 Gbps clock synchronization,�?? Opt. Express 12, 2011-2016 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-2011">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-2011</a>.
    [CrossRef] [PubMed]
  9. C.H. Bennett, �??Quantum Cryptography Using Any Two Nonorthogonal States,�?? Phys. Rev. Lett. 68, 3121-3124 (1992).
    [CrossRef] [PubMed]
  10. P. D. Townsend, �??Experimental investigation of the perfromance limits for first telecommunications-window quantum cryptography systems,�?? Photon. Technol. Lett. 10, 1048-1050 (1998).
    [CrossRef]
  11. S. D. Cova, M. Ghioni, F. Zappa, �??Circuit for high precision detection of the time of arrival of photons falling on single photon avalanche diodes,�?? US pat. 6,384,663 B2, May 7, 2002; (prior. 9 March 2000).
  12. I. Rech, I. Labanca, M. Ghioni, S. Cova, �??Circuit for improving the photon-timing performance of Single-Photon Counting Modules,�?? (submitted to) Rev. Sci. Instrum.
    [PubMed]
  13. A. Spinelli, A. L. Lacaita, "Physics and Numerical Simulation of Single Photon Avalanche Diodes," IEEE Trans. Electron. Devices 44, 1931-1943 (1997).
    [CrossRef]
  14. G. Brassard, N. Lütkenhaus, T. Mor and B. C. Sanders, �??Limitations on practical quantum cryptography,�?? Phys. Rev. Lett. 85, 1330-1333 (2000).
    [CrossRef] [PubMed]
  15. C. H. Bennett, G. Brassard, J. M. Robert, �??Privacy amplification by public discussion,�?? SIAM J. Comp, 17, 210-229 (1988).
    [CrossRef]
  16. M. Ghioni, S. D. Cova, A. Lacaita and G. Ripamonti, �??New silicon epitaxial avalanche diode for single-photon timing at room temperature,�?? Electron. Lett. 24, 1476-1477 (1988).
    [CrossRef]

Appl. Phys. (1)

C. Gobby, Z. L. Yuan and A. J. Shields, �??Quantum key distribution over 122 km of standard telecom fiber,�?? Appl. Phys. 84, 3762-3764 (2004).

Electron. Lett. (1)

M. Ghioni, S. D. Cova, A. Lacaita and G. Ripamonti, �??New silicon epitaxial avalanche diode for single-photon timing at room temperature,�?? Electron. Lett. 24, 1476-1477 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. J. Gordon, V. Fernandez, P. D. Townsend and G. S. Buller, �??A short wavelength gigahertz clocked fiberoptic quantum key distribution system,�?? IEEE J. Quantum Electron. 40, 900-908 (2004).
[CrossRef]

IEEE Trans. Electron. Devices (1)

A. Spinelli, A. L. Lacaita, "Physics and Numerical Simulation of Single Photon Avalanche Diodes," IEEE Trans. Electron. Devices 44, 1931-1943 (1997).
[CrossRef]

Intl. Conf. Comp. Sys. and Signal Proc. (1)

C. H. Bennett and G. Brassard, �??Quantum cryptography: Public key distribution and coin tossing,�?? in Proc. Of IEEE Inter. Conf. on Computer Systems and Signal Processing, Bangalore, Kartarna, (Institute of Electrical and Electronics Engineers, New York, 1984), 175-179.

J. Mod. Phys. (1)

J. G. Rarity, P. R. Tapster and P. M. Gorman, �??Practical free-space quantum key distribution over 10km in daylight and at night,�?? J. Mod. Phys. 48, 1887-1901 (2001).

Nature (1)

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster and J. G. Rarity, �??A step towards global key distribution,�?? Nature 419, 450-450 (2002).
[CrossRef] [PubMed]

New J. Phys. (1)

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy and H. Zbinden, �??Quantum key distribution over 67 km with a plug & play system,�?? New J. Phys. 4, 41.1-41.8 (2002).
[CrossRef]

Opt. Express (1)

Photon. Technol. Lett. (1)

P. D. Townsend, �??Experimental investigation of the perfromance limits for first telecommunications-window quantum cryptography systems,�?? Photon. Technol. Lett. 10, 1048-1050 (1998).
[CrossRef]

Phys. Rev. Lett. (3)

C.H. Bennett, �??Quantum Cryptography Using Any Two Nonorthogonal States,�?? Phys. Rev. Lett. 68, 3121-3124 (1992).
[CrossRef] [PubMed]

P.W. Shor and J. Preskill, �??Simple Proof of Security of the BB84 Quantum Key Distribution Protocol,�?? Phys. Rev. Lett. 85, 441-444 (2000).
[CrossRef] [PubMed]

G. Brassard, N. Lütkenhaus, T. Mor and B. C. Sanders, �??Limitations on practical quantum cryptography,�?? Phys. Rev. Lett. 85, 1330-1333 (2000).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

I. Rech, I. Labanca, M. Ghioni, S. Cova, �??Circuit for improving the photon-timing performance of Single-Photon Counting Modules,�?? (submitted to) Rev. Sci. Instrum.
[PubMed]

SIAM J. Comp (1)

C. H. Bennett, G. Brassard, J. M. Robert, �??Privacy amplification by public discussion,�?? SIAM J. Comp, 17, 210-229 (1988).
[CrossRef]

Other (1)

S. D. Cova, M. Ghioni, F. Zappa, �??Circuit for high precision detection of the time of arrival of photons falling on single photon avalanche diodes,�?? US pat. 6,384,663 B2, May 7, 2002; (prior. 9 March 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Basic quantum key distribution system experimental arrangement. PPG: Pulse pattern generator, NRZ: Non return to zero pulse pattern, V0 & V1 are the high-speed VCSELs and driver boards, SPCM: Single-photon counting module, SMF: Single mode fiber.

Fig. 2.
Fig. 2.

Timing jitter full width at half maximum of the standard SPCM SPAD and the SPCM with modified output circuitry.

Fig. 3.
Fig. 3.

Shift of the peak position of the standard SPCM SPAD and the SPCM with modified output circuitry.

Fig. 4.
Fig. 4.

QBER versus QKD system clock frequency at fixed fiber distance of 6.55 km of standard telecommunications fiber.

Fig. 5.
Fig. 5.

QBER versus fiber distance at a clock frequency of 2GHz. The points filled in black are taken with the full fiber transmission distance. The white points were measured using optical attenuation to simulate the given distances.

Metrics