Abstract

In this paper, a simulated annealing (SA) algorithm is proposed to be used in the optimization of the spot pattern for the indoor diffuse optical wireless network application. The channel response is analyzed using conventional grid-based patterns and a field of view (FOV) of 30° is found to give a good performance balance in the uniformity of the received power distribution and multipath dispersion. Using the algorithm to determine the spot pattern for the minimum standard deviation of the received power, an improvement of more than 85% is realized. To optimize the spot pattern at 30° FOV, a merit function is incorporated into the algorithm for two parameters, and the SA algorithm is run to obtain optimized spot patterns for both a 4.5m and 6m extent of the spot pattern. Various weights are used, and a performance improvement of 39% and 78% is observed for the 4.5m and 6m spot pattern sizes respectively which shows that the approach can be used to effectively optimize the spot pattern in the indoor optical wireless application.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. O. Kyas and G. Crawford, ATM Networks, (Prentice-Hall, Upper Saddle River, 2002).
  2. W.A.Arbaugh, �??Wireless security is different,�?? Computer 36, 99-101, (2003).
    [CrossRef]
  3. F. R. Gfeller and U. H. Bapst, �??Wireless in-house data communication via diffuse infrared radiation,�?? Proc. IEEE, 67, 1474�??1486, (1979).
    [CrossRef]
  4. D. Heatley and I. Neild, �??Optical wireless �?? the promise and the reality,�?? in Proceedings of the IEE Colloquium on Optical Wireless Communications, (Institute of Electrical Engineers, London, 1999), 1/1-1/6.
  5. K. Akhavan, M. Kavehrad and S. Jivkova, �??Wireless Infrared In-House Communications: How to Achieve Very High Bit Rates,�?? in Proceedings of IEEE Conference on Wireless Communications and Networking, (Institute of Electrical and Electronics Engineers, New York, 2000), 698- 703.
  6. V. Jungnickel, T. Haustein, A. Forck and C. von Helmolt, �??155Mbit/s wireless transmission with imaging infrared receiver,�?? Electron. Lett. 37, 314-315 (2001).
    [CrossRef]
  7. G. W. Marsh and J. M. Kahn, �??50-MB/s Diffuse Infrared Free-Space Link Using On-Off Keying With Decision-Feedback Equalization,�?? IEEE Photon. Technol. Lett. 6, 168-1270, (1994).
    [CrossRef]
  8. M. Karpipinen, K. Kataja, J.-T. Mäkinen, S. Juuso, H. J. Rajaniemi, P. Pääkkönen, J. Turunen, J. T. Rantala and P. Karioja, �??Wireless infrared data links: ray-trace simulations of diffuse channels and demonstration of diffractive element for multibeam transmitters,�?? Opt. Eng. 41, 899-910, (2002).
    [CrossRef]
  9. P. L. Eardley, D. R. Wisely, D. Wood and P. McLee, �??Holograms for optical wireless LANs,�?? Proc. IEE Optoelectron. 143, 365-369, (1996).
    [CrossRef]
  10. J. P. Yao, G. Chen and T. K. Lim, "Holographic diffuser for diffuse infrared wireless home networking," Opt. Eng. 42, 317-324, (2003).
    [CrossRef]
  11. M. Kavehrad and S. Jivkova, �??Indoor broadband optical wireless communications: optical subsystems designs and their impact on channel characteristics,�?? IEEE Wireless Commun. 10, 30-35, (2003).
    [CrossRef]
  12. Y. Alqudah and M. Kavehrad, �??Assessing the feasibility of new diffused configuration for broadband wireless infrared links,�?? Proceedings of the IEEE Conference on Wireless Communications and Networking, 1, (Institute of Electrical and Electronic Engineers, New York, 2003), 673-677.
  13. A. G. Al-Ghamdi and J. M. H. Elmirghani, �??Analysis of diffuse optical wireless channels employing spot-diffusing techniques, diversity receivers and combining schemes,�?? IEEE Tran. Commun. 52, (2004), 1622-1631.
    [CrossRef]
  14. Y.A. Alqudah and M. Kavehrad, �??MIMO Characterization of Indoor Wireless Optical Link using a Diffuse-Transmission Configuration,�?? IEEE Tran. Commun. 51, (2003), 1554-1560.
    [CrossRef]
  15. J. B. Carruthers and J. M. Kahn, �??Angle diversity for nondirected wireless infrared communications,�?? IEEE Trans. Commun. 48, 960-969, (2000).
    [CrossRef]
  16. J. R. Barry, Wireless Infrared Communications, (Kluwer Academic Publishers, Norwell, 1994).
    [CrossRef]
  17. T. S. Rappaport, Wireless Communications, Principles and Practices, (Prentice-Hall, Upper Saddle River, 2002).
  18. S. Kirkpatrick, C. D. Jr. Gerlatt, and M. P. Vecchi, �??Optimization by Simulated Annealing,�?? Science 220, 671-680, (1983).
    [CrossRef] [PubMed]
  19. S. Kirkpatrick, C. D. Jr. Gerlatt, and M. P. Vecchi, �??Optimization by Simulated Annealing,�?? IBM Research Report RC 9355, (1982).
  20. S. Kirkpatrick, �??Optimization by Simulated Annealing - Quantitative Studies,�?? J. Stat. Phys. 34, 975-986, (1984).
    [CrossRef]
  21. G. Keiser, Optical Fiber Communications, (McGraw-Hill, New York, 2000).

Computer (1)

W.A.Arbaugh, �??Wireless security is different,�?? Computer 36, 99-101, (2003).
[CrossRef]

Electron. Lett. (1)

V. Jungnickel, T. Haustein, A. Forck and C. von Helmolt, �??155Mbit/s wireless transmission with imaging infrared receiver,�?? Electron. Lett. 37, 314-315 (2001).
[CrossRef]

IBM Research Report (1)

S. Kirkpatrick, C. D. Jr. Gerlatt, and M. P. Vecchi, �??Optimization by Simulated Annealing,�?? IBM Research Report RC 9355, (1982).

IEEE Photon. Technol. Lett. (1)

G. W. Marsh and J. M. Kahn, �??50-MB/s Diffuse Infrared Free-Space Link Using On-Off Keying With Decision-Feedback Equalization,�?? IEEE Photon. Technol. Lett. 6, 168-1270, (1994).
[CrossRef]

IEEE Tran. Commun. (2)

A. G. Al-Ghamdi and J. M. H. Elmirghani, �??Analysis of diffuse optical wireless channels employing spot-diffusing techniques, diversity receivers and combining schemes,�?? IEEE Tran. Commun. 52, (2004), 1622-1631.
[CrossRef]

Y.A. Alqudah and M. Kavehrad, �??MIMO Characterization of Indoor Wireless Optical Link using a Diffuse-Transmission Configuration,�?? IEEE Tran. Commun. 51, (2003), 1554-1560.
[CrossRef]

IEEE Trans. Commun. (1)

J. B. Carruthers and J. M. Kahn, �??Angle diversity for nondirected wireless infrared communications,�?? IEEE Trans. Commun. 48, 960-969, (2000).
[CrossRef]

IEEE Wireless Commun. (1)

M. Kavehrad and S. Jivkova, �??Indoor broadband optical wireless communications: optical subsystems designs and their impact on channel characteristics,�?? IEEE Wireless Commun. 10, 30-35, (2003).
[CrossRef]

J. Stat. Phys. (1)

S. Kirkpatrick, �??Optimization by Simulated Annealing - Quantitative Studies,�?? J. Stat. Phys. 34, 975-986, (1984).
[CrossRef]

Opt. Eng. (2)

J. P. Yao, G. Chen and T. K. Lim, "Holographic diffuser for diffuse infrared wireless home networking," Opt. Eng. 42, 317-324, (2003).
[CrossRef]

M. Karpipinen, K. Kataja, J.-T. Mäkinen, S. Juuso, H. J. Rajaniemi, P. Pääkkönen, J. Turunen, J. T. Rantala and P. Karioja, �??Wireless infrared data links: ray-trace simulations of diffuse channels and demonstration of diffractive element for multibeam transmitters,�?? Opt. Eng. 41, 899-910, (2002).
[CrossRef]

Proc. IEE Optoelectron (1)

P. L. Eardley, D. R. Wisely, D. Wood and P. McLee, �??Holograms for optical wireless LANs,�?? Proc. IEE Optoelectron. 143, 365-369, (1996).
[CrossRef]

Proc. IEEE (1)

F. R. Gfeller and U. H. Bapst, �??Wireless in-house data communication via diffuse infrared radiation,�?? Proc. IEEE, 67, 1474�??1486, (1979).
[CrossRef]

Proc. of the IEE Colloq. on Opt. Wireles (1)

D. Heatley and I. Neild, �??Optical wireless �?? the promise and the reality,�?? in Proceedings of the IEE Colloquium on Optical Wireless Communications, (Institute of Electrical Engineers, London, 1999), 1/1-1/6.

Proceedings of IEEE (1)

K. Akhavan, M. Kavehrad and S. Jivkova, �??Wireless Infrared In-House Communications: How to Achieve Very High Bit Rates,�?? in Proceedings of IEEE Conference on Wireless Communications and Networking, (Institute of Electrical and Electronics Engineers, New York, 2000), 698- 703.

Science (1)

S. Kirkpatrick, C. D. Jr. Gerlatt, and M. P. Vecchi, �??Optimization by Simulated Annealing,�?? Science 220, 671-680, (1983).
[CrossRef] [PubMed]

Other (5)

G. Keiser, Optical Fiber Communications, (McGraw-Hill, New York, 2000).

O. Kyas and G. Crawford, ATM Networks, (Prentice-Hall, Upper Saddle River, 2002).

Y. Alqudah and M. Kavehrad, �??Assessing the feasibility of new diffused configuration for broadband wireless infrared links,�?? Proceedings of the IEEE Conference on Wireless Communications and Networking, 1, (Institute of Electrical and Electronic Engineers, New York, 2003), 673-677.

J. R. Barry, Wireless Infrared Communications, (Kluwer Academic Publishers, Norwell, 1994).
[CrossRef]

T. S. Rappaport, Wireless Communications, Principles and Practices, (Prentice-Hall, Upper Saddle River, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Spot patterns used in the simulation: (a) Lambertian (LAM), (b) 2×2, (c) 4×4, (d) 6×6, (e) 8×8, (f) 10×10, (g) Single point (PT) and (h) Uniform illumination (UNI).

Fig. 2.
Fig. 2.

Impulse responses at the detector: (a) Position ‘A’, FOV 10°; (b) Position ‘B’, FOV 10°; (c) Position ‘A’, FOV 90° and (d) Position ‘B’, FOV 90°.

Fig. 3.
Fig. 3.

Plotted results of the (a) average received power, (b) standard deviation of the received power, (c) average delay spread and (d) standard deviation of the delay spread when the spot patterns and FOV are varied.

Fig. 4.
Fig. 4.

Comparison of results using iterative minimization (IM) and simulated annealing (SA).

Fig. 5.
Fig. 5.

Comparison of Results using Simulated Annealing and conventional grid designs for (a) Standard deviation of received power and (b) average RMS delay spread performance.

Fig. 6.
Fig. 6.

SA Optimized spot patterns and signal power distribution for FOV of (a) 90°, (b) 45°, (c) 30°, (d) 20° and (e) 10°.

Fig. 7.
Fig. 7.

Metrics of the obtained result for (a) received power and (b) RMS delay spread.

Fig. 8.
Fig. 8.

Obtained spot patterns using SA algorithm: (a) W1=0.1, 4.5m; (b) W1=0.13, 4.5m; (c) W1=0.15, 4.5m, (d) W1=1.00, 4.5m; (e) W1=0.1, 6m; (f) W1=0.13, 6m; (g) W1=0.15, 6m and (h) W1=1.00, 6m.

Fig. 9.
Fig. 9.

Ratio of the obtained metrics for (a) received power and (b) RMS delay spread.

Fig. 10.
Fig. 10.

Spot patterns and signal power distribution maps for (a) W1=1.00, 4.5m extent, (b) W1=0.85, 6m.and (c) W1=1, 6m

Fig. 11.
Fig. 11.

a) Extent of pattern when offset 1.5m from centre and (b) corresponding power distribution; (c) extent of pattern when offset 3m from centre and (d) corresponding power distribution.

Fig. 12.
Fig. 12.

(a) BER across the receiving plane and (b) Percentile of locations below a BER value.

Tables (2)

Tables Icon

Table 1. Metrics from Impulse Response Graphs

Tables Icon

Table 2. Performance of various patterns at 30° FOV

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

h ( t ; S , R ) = n + 1 2 π cos n ( ϕ ) · d Ω · rect ( θ FOV ) · δ ( t r c )

Metrics