Abstract

In this paper, a simulated annealing (SA) algorithm is proposed to be used in the optimization of the spot pattern for the indoor diffuse optical wireless network application. The channel response is analyzed using conventional grid-based patterns and a field of view (FOV) of 30° is found to give a good performance balance in the uniformity of the received power distribution and multipath dispersion. Using the algorithm to determine the spot pattern for the minimum standard deviation of the received power, an improvement of more than 85% is realized. To optimize the spot pattern at 30° FOV, a merit function is incorporated into the algorithm for two parameters, and the SA algorithm is run to obtain optimized spot patterns for both a 4.5m and 6m extent of the spot pattern. Various weights are used, and a performance improvement of 39% and 78% is observed for the 4.5m and 6m spot pattern sizes respectively which shows that the approach can be used to effectively optimize the spot pattern in the indoor optical wireless application.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Evolutionary algorithm based uniform received power and illumination rendering for indoor visible light communication

Jupeng Ding, Zhitong Huang, and Yuefeng Ji
J. Opt. Soc. Am. A 29(6) 971-979 (2012)

Hologram Selection in Realistic Indoor Optical Wireless Systems With Angle Diversity Receivers

Mohammed T. Alresheedi and Jaafar M. H. Elmirghani
J. Opt. Commun. Netw. 7(8) 797-813 (2015)

Fast and Efficient Adaptation Techniques for Visible Light Communication Systems

Ahmed Taha Hussein, Mohammed T. Alresheedi, and Jaafar M. H. Elmirghani
J. Opt. Commun. Netw. 8(6) 382-397 (2016)

References

  • View by:
  • |
  • |
  • |

  1. O. Kyas and G. Crawford, ATM Networks, (Prentice-Hall, Upper Saddle River, 2002).
  2. W. A. Arbaugh, “Wireless security is different,” Computer 36, 99–101, (2003).
    [Crossref]
  3. F. R. Gfeller and U. H. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE,  67, 1474–1486, (1979).
    [Crossref]
  4. D. Heatley and I. Neild, “Optical wireless — the promise and the reality,” inProceedings of the IEE Colloquium on Optical Wireless Communications, (Institute of Electrical Engineers, London, 1999), 1/1–1/6.
  5. K. Akhavan, M. Kavehrad, and S. Jivkova, “Wireless Infrared In-House Communications: How to Achieve Very High Bit Rates,” inProceedings of IEEE Conference on Wireless Communications and Networking, (Institute of Electrical and Electronics Engineers, New York, 2000), 698–703.
  6. V. Jungnickel, T. Haustein, A. Forck, and C. von Helmolt, “155Mbit/s wireless transmission with imaging infrared receiver,” Electron. Lett. 37, 314–315 (2001).
    [Crossref]
  7. G. W. Marsh and J. M. Kahn, “50-MB/s Diffuse Infrared Free-Space Link Using On-Off Keying With Decision-Feedback Equalization,” IEEE Photon. Technol. Lett. 6, 168–1270, (1994).
    [Crossref]
  8. M. Karpipinen, K. Kataja, J.-T. Mäkinen, S. Juuso, H. J. Rajaniemi, P. Pääkkönen, J. Turunen, J. T. Rantala, and P. Karioja, “Wireless infrared data links: ray-trace simulations of diffuse channels and demonstration of diffractive element for multibeam transmitters,” Opt. Eng. 41, 899–910, (2002).
    [Crossref]
  9. P. L. Eardley, D. R. Wisely, D. Wood, and P. McLee, “Holograms for optical wireless LANs,” Proc. IEE Optoelectron. 143, 365–369, (1996).
    [Crossref]
  10. J. P. Yao, G. Chen, and T. K. Lim, “Holographic diffuser for diffuse infrared wireless home networking,” Opt. Eng. 42, 317–324, (2003).
    [Crossref]
  11. M. Kavehrad and S. Jivkova, “Indoor broadband optical wireless communications: optical subsystems designs and their impact on channel characteristics,” IEEE Wireless Commun. 10, 30–35, (2003).
    [Crossref]
  12. Y. Alqudah and M. Kavehrad, “Assessing the feasibility of new diffused configuration for broadband wireless infrared links,” Proceedings of the IEEE Conference on Wireless Communications and Networking,  1, (Institute of Electrical and Electronic Engineers, New York, 2003), 673–677.
  13. A. G. Al-Ghamdi and J. M. H. Elmirghani, “Analysis of diffuse optical wireless channels employing spot diffusing techniques, diversity receivers and combining schemes,” IEEE Tran. Commun. 52, (2004), 1622–1631.
    [Crossref]
  14. Y.A. Alqudah and M. Kavehrad, “MIMO Characterization of Indoor Wireless Optical Link using a Diffuse-Transmission Configuration,” IEEE Tran. Commun,  51, (2003), 1554–1560.
    [Crossref]
  15. J. B. Carruthers and J. M. Kahn, “Angle diversity for nondirected wireless infrared communications,” IEEE Trans. Commun. 48, 960–969, (2000).
    [Crossref]
  16. J. R. Barry, Wireless Infrared Communications, (Kluwer Academic Publishers, Norwell, 1994).
    [Crossref]
  17. T. S. Rappaport, Wireless Communications, Principles and Practices, (Prentice-Hall, Upper Saddle River, 2002).
  18. S. Kirkpatrick, C. D. Gerlatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220, 671–680, (1983).
    [Crossref] [PubMed]
  19. S. Kirkpatrick, C. D. Gerlatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” IBM Research Report RC9355, (1982).
  20. S. Kirkpatrick, “Optimization by Simulated Annealing - Quantitative Studies,” J. Stat. Phys. 34, 975–986, (1984).
    [Crossref]
  21. G. Keiser, Optical Fiber Communications, (McGraw-Hill, New York, 2000).

2004 (1)

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Analysis of diffuse optical wireless channels employing spot diffusing techniques, diversity receivers and combining schemes,” IEEE Tran. Commun. 52, (2004), 1622–1631.
[Crossref]

2003 (5)

Y.A. Alqudah and M. Kavehrad, “MIMO Characterization of Indoor Wireless Optical Link using a Diffuse-Transmission Configuration,” IEEE Tran. Commun,  51, (2003), 1554–1560.
[Crossref]

W. A. Arbaugh, “Wireless security is different,” Computer 36, 99–101, (2003).
[Crossref]

J. P. Yao, G. Chen, and T. K. Lim, “Holographic diffuser for diffuse infrared wireless home networking,” Opt. Eng. 42, 317–324, (2003).
[Crossref]

M. Kavehrad and S. Jivkova, “Indoor broadband optical wireless communications: optical subsystems designs and their impact on channel characteristics,” IEEE Wireless Commun. 10, 30–35, (2003).
[Crossref]

Y. Alqudah and M. Kavehrad, “Assessing the feasibility of new diffused configuration for broadband wireless infrared links,” Proceedings of the IEEE Conference on Wireless Communications and Networking,  1, (Institute of Electrical and Electronic Engineers, New York, 2003), 673–677.

2002 (1)

M. Karpipinen, K. Kataja, J.-T. Mäkinen, S. Juuso, H. J. Rajaniemi, P. Pääkkönen, J. Turunen, J. T. Rantala, and P. Karioja, “Wireless infrared data links: ray-trace simulations of diffuse channels and demonstration of diffractive element for multibeam transmitters,” Opt. Eng. 41, 899–910, (2002).
[Crossref]

2001 (1)

V. Jungnickel, T. Haustein, A. Forck, and C. von Helmolt, “155Mbit/s wireless transmission with imaging infrared receiver,” Electron. Lett. 37, 314–315 (2001).
[Crossref]

2000 (1)

J. B. Carruthers and J. M. Kahn, “Angle diversity for nondirected wireless infrared communications,” IEEE Trans. Commun. 48, 960–969, (2000).
[Crossref]

1996 (1)

P. L. Eardley, D. R. Wisely, D. Wood, and P. McLee, “Holograms for optical wireless LANs,” Proc. IEE Optoelectron. 143, 365–369, (1996).
[Crossref]

1994 (1)

G. W. Marsh and J. M. Kahn, “50-MB/s Diffuse Infrared Free-Space Link Using On-Off Keying With Decision-Feedback Equalization,” IEEE Photon. Technol. Lett. 6, 168–1270, (1994).
[Crossref]

1984 (1)

S. Kirkpatrick, “Optimization by Simulated Annealing - Quantitative Studies,” J. Stat. Phys. 34, 975–986, (1984).
[Crossref]

1983 (1)

S. Kirkpatrick, C. D. Gerlatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220, 671–680, (1983).
[Crossref] [PubMed]

1982 (1)

S. Kirkpatrick, C. D. Gerlatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” IBM Research Report RC9355, (1982).

1979 (1)

F. R. Gfeller and U. H. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE,  67, 1474–1486, (1979).
[Crossref]

Akhavan, K.

K. Akhavan, M. Kavehrad, and S. Jivkova, “Wireless Infrared In-House Communications: How to Achieve Very High Bit Rates,” inProceedings of IEEE Conference on Wireless Communications and Networking, (Institute of Electrical and Electronics Engineers, New York, 2000), 698–703.

Al-Ghamdi, A. G.

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Analysis of diffuse optical wireless channels employing spot diffusing techniques, diversity receivers and combining schemes,” IEEE Tran. Commun. 52, (2004), 1622–1631.
[Crossref]

Alqudah, Y.

Y. Alqudah and M. Kavehrad, “Assessing the feasibility of new diffused configuration for broadband wireless infrared links,” Proceedings of the IEEE Conference on Wireless Communications and Networking,  1, (Institute of Electrical and Electronic Engineers, New York, 2003), 673–677.

Alqudah, Y.A.

Y.A. Alqudah and M. Kavehrad, “MIMO Characterization of Indoor Wireless Optical Link using a Diffuse-Transmission Configuration,” IEEE Tran. Commun,  51, (2003), 1554–1560.
[Crossref]

Arbaugh, W. A.

W. A. Arbaugh, “Wireless security is different,” Computer 36, 99–101, (2003).
[Crossref]

Bapst, U. H.

F. R. Gfeller and U. H. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE,  67, 1474–1486, (1979).
[Crossref]

Barry, J. R.

J. R. Barry, Wireless Infrared Communications, (Kluwer Academic Publishers, Norwell, 1994).
[Crossref]

Carruthers, J. B.

J. B. Carruthers and J. M. Kahn, “Angle diversity for nondirected wireless infrared communications,” IEEE Trans. Commun. 48, 960–969, (2000).
[Crossref]

Chen, G.

J. P. Yao, G. Chen, and T. K. Lim, “Holographic diffuser for diffuse infrared wireless home networking,” Opt. Eng. 42, 317–324, (2003).
[Crossref]

Crawford, G.

O. Kyas and G. Crawford, ATM Networks, (Prentice-Hall, Upper Saddle River, 2002).

Eardley, P. L.

P. L. Eardley, D. R. Wisely, D. Wood, and P. McLee, “Holograms for optical wireless LANs,” Proc. IEE Optoelectron. 143, 365–369, (1996).
[Crossref]

Elmirghani, J. M. H.

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Analysis of diffuse optical wireless channels employing spot diffusing techniques, diversity receivers and combining schemes,” IEEE Tran. Commun. 52, (2004), 1622–1631.
[Crossref]

Forck, A.

V. Jungnickel, T. Haustein, A. Forck, and C. von Helmolt, “155Mbit/s wireless transmission with imaging infrared receiver,” Electron. Lett. 37, 314–315 (2001).
[Crossref]

Gerlatt, C. D.

S. Kirkpatrick, C. D. Gerlatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220, 671–680, (1983).
[Crossref] [PubMed]

S. Kirkpatrick, C. D. Gerlatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” IBM Research Report RC9355, (1982).

Gfeller, F. R.

F. R. Gfeller and U. H. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE,  67, 1474–1486, (1979).
[Crossref]

Haustein, T.

V. Jungnickel, T. Haustein, A. Forck, and C. von Helmolt, “155Mbit/s wireless transmission with imaging infrared receiver,” Electron. Lett. 37, 314–315 (2001).
[Crossref]

Heatley, D.

D. Heatley and I. Neild, “Optical wireless — the promise and the reality,” inProceedings of the IEE Colloquium on Optical Wireless Communications, (Institute of Electrical Engineers, London, 1999), 1/1–1/6.

Jivkova, S.

M. Kavehrad and S. Jivkova, “Indoor broadband optical wireless communications: optical subsystems designs and their impact on channel characteristics,” IEEE Wireless Commun. 10, 30–35, (2003).
[Crossref]

K. Akhavan, M. Kavehrad, and S. Jivkova, “Wireless Infrared In-House Communications: How to Achieve Very High Bit Rates,” inProceedings of IEEE Conference on Wireless Communications and Networking, (Institute of Electrical and Electronics Engineers, New York, 2000), 698–703.

Jungnickel, V.

V. Jungnickel, T. Haustein, A. Forck, and C. von Helmolt, “155Mbit/s wireless transmission with imaging infrared receiver,” Electron. Lett. 37, 314–315 (2001).
[Crossref]

Juuso, S.

M. Karpipinen, K. Kataja, J.-T. Mäkinen, S. Juuso, H. J. Rajaniemi, P. Pääkkönen, J. Turunen, J. T. Rantala, and P. Karioja, “Wireless infrared data links: ray-trace simulations of diffuse channels and demonstration of diffractive element for multibeam transmitters,” Opt. Eng. 41, 899–910, (2002).
[Crossref]

Kahn, J. M.

J. B. Carruthers and J. M. Kahn, “Angle diversity for nondirected wireless infrared communications,” IEEE Trans. Commun. 48, 960–969, (2000).
[Crossref]

G. W. Marsh and J. M. Kahn, “50-MB/s Diffuse Infrared Free-Space Link Using On-Off Keying With Decision-Feedback Equalization,” IEEE Photon. Technol. Lett. 6, 168–1270, (1994).
[Crossref]

Karioja, P.

M. Karpipinen, K. Kataja, J.-T. Mäkinen, S. Juuso, H. J. Rajaniemi, P. Pääkkönen, J. Turunen, J. T. Rantala, and P. Karioja, “Wireless infrared data links: ray-trace simulations of diffuse channels and demonstration of diffractive element for multibeam transmitters,” Opt. Eng. 41, 899–910, (2002).
[Crossref]

Karpipinen, M.

M. Karpipinen, K. Kataja, J.-T. Mäkinen, S. Juuso, H. J. Rajaniemi, P. Pääkkönen, J. Turunen, J. T. Rantala, and P. Karioja, “Wireless infrared data links: ray-trace simulations of diffuse channels and demonstration of diffractive element for multibeam transmitters,” Opt. Eng. 41, 899–910, (2002).
[Crossref]

Kataja, K.

M. Karpipinen, K. Kataja, J.-T. Mäkinen, S. Juuso, H. J. Rajaniemi, P. Pääkkönen, J. Turunen, J. T. Rantala, and P. Karioja, “Wireless infrared data links: ray-trace simulations of diffuse channels and demonstration of diffractive element for multibeam transmitters,” Opt. Eng. 41, 899–910, (2002).
[Crossref]

Kavehrad, M.

M. Kavehrad and S. Jivkova, “Indoor broadband optical wireless communications: optical subsystems designs and their impact on channel characteristics,” IEEE Wireless Commun. 10, 30–35, (2003).
[Crossref]

Y.A. Alqudah and M. Kavehrad, “MIMO Characterization of Indoor Wireless Optical Link using a Diffuse-Transmission Configuration,” IEEE Tran. Commun,  51, (2003), 1554–1560.
[Crossref]

Y. Alqudah and M. Kavehrad, “Assessing the feasibility of new diffused configuration for broadband wireless infrared links,” Proceedings of the IEEE Conference on Wireless Communications and Networking,  1, (Institute of Electrical and Electronic Engineers, New York, 2003), 673–677.

K. Akhavan, M. Kavehrad, and S. Jivkova, “Wireless Infrared In-House Communications: How to Achieve Very High Bit Rates,” inProceedings of IEEE Conference on Wireless Communications and Networking, (Institute of Electrical and Electronics Engineers, New York, 2000), 698–703.

Keiser, G.

G. Keiser, Optical Fiber Communications, (McGraw-Hill, New York, 2000).

Kirkpatrick, S.

S. Kirkpatrick, “Optimization by Simulated Annealing - Quantitative Studies,” J. Stat. Phys. 34, 975–986, (1984).
[Crossref]

S. Kirkpatrick, C. D. Gerlatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220, 671–680, (1983).
[Crossref] [PubMed]

S. Kirkpatrick, C. D. Gerlatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” IBM Research Report RC9355, (1982).

Kyas, O.

O. Kyas and G. Crawford, ATM Networks, (Prentice-Hall, Upper Saddle River, 2002).

Lim, T. K.

J. P. Yao, G. Chen, and T. K. Lim, “Holographic diffuser for diffuse infrared wireless home networking,” Opt. Eng. 42, 317–324, (2003).
[Crossref]

Mäkinen, J.-T.

M. Karpipinen, K. Kataja, J.-T. Mäkinen, S. Juuso, H. J. Rajaniemi, P. Pääkkönen, J. Turunen, J. T. Rantala, and P. Karioja, “Wireless infrared data links: ray-trace simulations of diffuse channels and demonstration of diffractive element for multibeam transmitters,” Opt. Eng. 41, 899–910, (2002).
[Crossref]

Marsh, G. W.

G. W. Marsh and J. M. Kahn, “50-MB/s Diffuse Infrared Free-Space Link Using On-Off Keying With Decision-Feedback Equalization,” IEEE Photon. Technol. Lett. 6, 168–1270, (1994).
[Crossref]

McLee, P.

P. L. Eardley, D. R. Wisely, D. Wood, and P. McLee, “Holograms for optical wireless LANs,” Proc. IEE Optoelectron. 143, 365–369, (1996).
[Crossref]

Neild, I.

D. Heatley and I. Neild, “Optical wireless — the promise and the reality,” inProceedings of the IEE Colloquium on Optical Wireless Communications, (Institute of Electrical Engineers, London, 1999), 1/1–1/6.

Pääkkönen, P.

M. Karpipinen, K. Kataja, J.-T. Mäkinen, S. Juuso, H. J. Rajaniemi, P. Pääkkönen, J. Turunen, J. T. Rantala, and P. Karioja, “Wireless infrared data links: ray-trace simulations of diffuse channels and demonstration of diffractive element for multibeam transmitters,” Opt. Eng. 41, 899–910, (2002).
[Crossref]

Rajaniemi, H. J.

M. Karpipinen, K. Kataja, J.-T. Mäkinen, S. Juuso, H. J. Rajaniemi, P. Pääkkönen, J. Turunen, J. T. Rantala, and P. Karioja, “Wireless infrared data links: ray-trace simulations of diffuse channels and demonstration of diffractive element for multibeam transmitters,” Opt. Eng. 41, 899–910, (2002).
[Crossref]

Rantala, J. T.

M. Karpipinen, K. Kataja, J.-T. Mäkinen, S. Juuso, H. J. Rajaniemi, P. Pääkkönen, J. Turunen, J. T. Rantala, and P. Karioja, “Wireless infrared data links: ray-trace simulations of diffuse channels and demonstration of diffractive element for multibeam transmitters,” Opt. Eng. 41, 899–910, (2002).
[Crossref]

Rappaport, T. S.

T. S. Rappaport, Wireless Communications, Principles and Practices, (Prentice-Hall, Upper Saddle River, 2002).

Turunen, J.

M. Karpipinen, K. Kataja, J.-T. Mäkinen, S. Juuso, H. J. Rajaniemi, P. Pääkkönen, J. Turunen, J. T. Rantala, and P. Karioja, “Wireless infrared data links: ray-trace simulations of diffuse channels and demonstration of diffractive element for multibeam transmitters,” Opt. Eng. 41, 899–910, (2002).
[Crossref]

Vecchi, M. P.

S. Kirkpatrick, C. D. Gerlatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220, 671–680, (1983).
[Crossref] [PubMed]

S. Kirkpatrick, C. D. Gerlatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” IBM Research Report RC9355, (1982).

von Helmolt, C.

V. Jungnickel, T. Haustein, A. Forck, and C. von Helmolt, “155Mbit/s wireless transmission with imaging infrared receiver,” Electron. Lett. 37, 314–315 (2001).
[Crossref]

Wisely, D. R.

P. L. Eardley, D. R. Wisely, D. Wood, and P. McLee, “Holograms for optical wireless LANs,” Proc. IEE Optoelectron. 143, 365–369, (1996).
[Crossref]

Wood, D.

P. L. Eardley, D. R. Wisely, D. Wood, and P. McLee, “Holograms for optical wireless LANs,” Proc. IEE Optoelectron. 143, 365–369, (1996).
[Crossref]

Yao, J. P.

J. P. Yao, G. Chen, and T. K. Lim, “Holographic diffuser for diffuse infrared wireless home networking,” Opt. Eng. 42, 317–324, (2003).
[Crossref]

Computer (1)

W. A. Arbaugh, “Wireless security is different,” Computer 36, 99–101, (2003).
[Crossref]

Electron. Lett. (1)

V. Jungnickel, T. Haustein, A. Forck, and C. von Helmolt, “155Mbit/s wireless transmission with imaging infrared receiver,” Electron. Lett. 37, 314–315 (2001).
[Crossref]

IBM Research Report RC (1)

S. Kirkpatrick, C. D. Gerlatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” IBM Research Report RC9355, (1982).

IEEE Photon. Technol. Lett. (1)

G. W. Marsh and J. M. Kahn, “50-MB/s Diffuse Infrared Free-Space Link Using On-Off Keying With Decision-Feedback Equalization,” IEEE Photon. Technol. Lett. 6, 168–1270, (1994).
[Crossref]

IEEE Tran. Commun (1)

Y.A. Alqudah and M. Kavehrad, “MIMO Characterization of Indoor Wireless Optical Link using a Diffuse-Transmission Configuration,” IEEE Tran. Commun,  51, (2003), 1554–1560.
[Crossref]

IEEE Tran. Commun. (1)

A. G. Al-Ghamdi and J. M. H. Elmirghani, “Analysis of diffuse optical wireless channels employing spot diffusing techniques, diversity receivers and combining schemes,” IEEE Tran. Commun. 52, (2004), 1622–1631.
[Crossref]

IEEE Trans. Commun. (1)

J. B. Carruthers and J. M. Kahn, “Angle diversity for nondirected wireless infrared communications,” IEEE Trans. Commun. 48, 960–969, (2000).
[Crossref]

IEEE Wireless Commun. (1)

M. Kavehrad and S. Jivkova, “Indoor broadband optical wireless communications: optical subsystems designs and their impact on channel characteristics,” IEEE Wireless Commun. 10, 30–35, (2003).
[Crossref]

J. Stat. Phys. (1)

S. Kirkpatrick, “Optimization by Simulated Annealing - Quantitative Studies,” J. Stat. Phys. 34, 975–986, (1984).
[Crossref]

Opt. Eng. (2)

J. P. Yao, G. Chen, and T. K. Lim, “Holographic diffuser for diffuse infrared wireless home networking,” Opt. Eng. 42, 317–324, (2003).
[Crossref]

M. Karpipinen, K. Kataja, J.-T. Mäkinen, S. Juuso, H. J. Rajaniemi, P. Pääkkönen, J. Turunen, J. T. Rantala, and P. Karioja, “Wireless infrared data links: ray-trace simulations of diffuse channels and demonstration of diffractive element for multibeam transmitters,” Opt. Eng. 41, 899–910, (2002).
[Crossref]

Proc. IEE Optoelectron. (1)

P. L. Eardley, D. R. Wisely, D. Wood, and P. McLee, “Holograms for optical wireless LANs,” Proc. IEE Optoelectron. 143, 365–369, (1996).
[Crossref]

Proc. IEEE (1)

F. R. Gfeller and U. H. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proc. IEEE,  67, 1474–1486, (1979).
[Crossref]

Proceedings of the IEEE Conference on Wireless Communications and Networking (1)

Y. Alqudah and M. Kavehrad, “Assessing the feasibility of new diffused configuration for broadband wireless infrared links,” Proceedings of the IEEE Conference on Wireless Communications and Networking,  1, (Institute of Electrical and Electronic Engineers, New York, 2003), 673–677.

Science (1)

S. Kirkpatrick, C. D. Gerlatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 220, 671–680, (1983).
[Crossref] [PubMed]

Other (6)

G. Keiser, Optical Fiber Communications, (McGraw-Hill, New York, 2000).

O. Kyas and G. Crawford, ATM Networks, (Prentice-Hall, Upper Saddle River, 2002).

J. R. Barry, Wireless Infrared Communications, (Kluwer Academic Publishers, Norwell, 1994).
[Crossref]

T. S. Rappaport, Wireless Communications, Principles and Practices, (Prentice-Hall, Upper Saddle River, 2002).

D. Heatley and I. Neild, “Optical wireless — the promise and the reality,” inProceedings of the IEE Colloquium on Optical Wireless Communications, (Institute of Electrical Engineers, London, 1999), 1/1–1/6.

K. Akhavan, M. Kavehrad, and S. Jivkova, “Wireless Infrared In-House Communications: How to Achieve Very High Bit Rates,” inProceedings of IEEE Conference on Wireless Communications and Networking, (Institute of Electrical and Electronics Engineers, New York, 2000), 698–703.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Spot patterns used in the simulation: (a) Lambertian (LAM), (b) 2×2, (c) 4×4, (d) 6×6, (e) 8×8, (f) 10×10, (g) Single point (PT) and (h) Uniform illumination (UNI).

Fig. 2.
Fig. 2.

Impulse responses at the detector: (a) Position ‘A’, FOV 10°; (b) Position ‘B’, FOV 10°; (c) Position ‘A’, FOV 90° and (d) Position ‘B’, FOV 90°.

Fig. 3.
Fig. 3.

Plotted results of the (a) average received power, (b) standard deviation of the received power, (c) average delay spread and (d) standard deviation of the delay spread when the spot patterns and FOV are varied.

Fig. 4.
Fig. 4.

Comparison of results using iterative minimization (IM) and simulated annealing (SA).

Fig. 5.
Fig. 5.

Comparison of Results using Simulated Annealing and conventional grid designs for (a) Standard deviation of received power and (b) average RMS delay spread performance.

Fig. 6.
Fig. 6.

SA Optimized spot patterns and signal power distribution for FOV of (a) 90°, (b) 45°, (c) 30°, (d) 20° and (e) 10°.

Fig. 7.
Fig. 7.

Metrics of the obtained result for (a) received power and (b) RMS delay spread.

Fig. 8.
Fig. 8.

Obtained spot patterns using SA algorithm: (a) W1=0.1, 4.5m; (b) W1=0.13, 4.5m; (c) W1=0.15, 4.5m, (d) W1=1.00, 4.5m; (e) W1=0.1, 6m; (f) W1=0.13, 6m; (g) W1=0.15, 6m and (h) W1=1.00, 6m.

Fig. 9.
Fig. 9.

Ratio of the obtained metrics for (a) received power and (b) RMS delay spread.

Fig. 10.
Fig. 10.

Spot patterns and signal power distribution maps for (a) W1=1.00, 4.5m extent, (b) W1=0.85, 6m.and (c) W1=1, 6m

Fig. 11.
Fig. 11.

a) Extent of pattern when offset 1.5m from centre and (b) corresponding power distribution; (c) extent of pattern when offset 3m from centre and (d) corresponding power distribution.

Fig. 12.
Fig. 12.

(a) BER across the receiving plane and (b) Percentile of locations below a BER value.

Tables (2)

Tables Icon

Table 1. Metrics from Impulse Response Graphs

Tables Icon

Table 2. Performance of various patterns at 30° FOV

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

h ( t ; S , R ) = n + 1 2 π cos n ( ϕ ) · d Ω · rect ( θ FOV ) · δ ( t r c )

Metrics