Abstract

All-optical single and multiple wavelength conversion and tuning by the cascaded sum- and difference frequency generation (cSFG/DFG) have been demonstrated in a temperature gradient controlled periodically poled Ti:LiNbO3 (Ti:PPLN) channel waveguide. Up to 4 channels of wavelength division multiplexed (WDM) signals which have 100 GHz channel spacing were simultaneously wavelength converted at a 16.8 °C temperature difference between both end faces in a Ti:PPLN waveguide. The 3 dB signal conversion bandwidth was measured to be as broad as 48 nm at single channel conversion. The maximum wavelength conversion efficiency and optical signal to noise ratio of wavelength converted channel were approximately -16 dB and -20 dB at a total pump power level of 810 mW.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. J. Yoo, �??Wavelength conversion technologies for WDM network applications,�?? J. Lightwave Technol. 14, 955-966 (1996).
    [CrossRef]
  2. C. Q. Xu, H. Okayama, and M. Kawahara, �??1.5 µm band efficient broadband wavelength conversion by difference freqeuncy generation in a periodically domain-inverted LiNbO3 channel waveguide,�?? Appl. Phys. Lett. 63, 3559-3561 (1993).
    [CrossRef]
  3. K. Gallo, G. Assanto, and G. Stegeman, �??Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,�?? Appl. Phys. Lett. 71, 1020-1022 (1997).
    [CrossRef]
  4. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, �??1.5 µm band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,�?? Opt. Lett. 23, 1004-1006 (1998).
    [CrossRef]
  5. Y. H. Min, J. H. Lee, Y. L. Lee, W. Grundköter, V. Quiring, and W. Sohler, �??Tunable all-optical wavelength conversion of 5-ps pulses by cascaded sum- and difference frequency generation (cSFG/DFG) in a Ti:PPNL waveguide,�?? OFC �??03, Atlanta, GA/USA, March, p. 767-768, paper FP4 (2003).
  6. Y. L. Lee, C. Jung, Y.-C. Noh, M. Y. Park, C. C. Byeon, D.-K. Ko, and J. Lee, �??Channel Selective Wavelength Conversion and Tuning in periodic poled Ti:PPLN Channel Waveguides,�?? Opt. Express 12, 2649-2655 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2649">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2649</a>.
    [CrossRef] [PubMed]
  7. E. Yamazaki, A. Takada, J. Yamawaku, T. Morioka, O. Tadanaga, and M. Asobe, �??Simultaneous and Arbitrary Wavelength Conversion of WDM Signals Using Multiple Wavelength Quasi Phase Matched LiNbO3 waveguide,�?? OFC �??04, Los Angels/USA, paper FL6 (2004).
  8. Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, D.-K. Ko, and J. Lee, �??Broadening of the second-harmonic phase-matching bandwidth in a temperature gradient controlled periodically poled Ti:LiNbO3 channel waveguide,�?? Opt. Express 11, 2813-2819 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2813">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2813</a>.
    [CrossRef] [PubMed]
  9. Y. L. Lee, C. Jung, Y. Noh, I. W. Choi, D. Ko, J. Lee, H. Lee, and H. Suche, �??Wavelength selective single and dual-channel dropping in a periodically poled Ti:LiNbO3 waveguide,�?? Opt. Express 12, 701-707 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-701">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-701</a>.
    [CrossRef] [PubMed]
  10. M. A. Arbore, O. Marco, and M. M. Fejer, �??Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings,�?? Opt. Lett. 22, 865-867 (1997).
    [CrossRef] [PubMed]
  11. M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, �??Engineerable compression of ultrashort pulses by use of second-harmonic generationin chirped-period-poled lithium niobate,�?? Opt. Lett. 22, 1341-1343 (1997).
    [CrossRef]
  12. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, �??Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides,�?? Opt. Lett. 24, 1157-1159 (1999).
    [CrossRef]
  13. Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, B.-A. Yu, J. Lee, and D.-K. Ko, �??Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique�??, Appl. Phys. Lett. 86, 011104-1,3 (2005).
  14. G. Schreiber, H. Suche, Y. L. Lee, W. Grundköter, V. Quiring, R. Ricken, and W. Sohler, �??Efficient Cascaded Difference Frequency Conversion in Periodically Poled Ti:LiNbO3Waveguides Using Pulsed and cw Pumping,�?? Appl. Phys. B Special Issue on Integrated Optics, (73), 501-504 (2001).
  15. Y. H. Min, W. Grundköter, J. H. Lee, Y. L. Lee, V. Quiring, and W. Sohler, �??Efficient, all-optical wavelength conversion and tuning of ps-pulses in a Ti:PPLN channel waveguide,�?? Proc. Conference Lasers and Electro - Optics (CLEO/Europe �??03), Munich/Germany, paper CE5-1-THU (2003).
  16. B. Chen, and C.-Q. Xu, �??Analysis of novel cascaded �?(2) SFG+DFG wavelength conversions in quasi-phase-matched waveguides,�?? IEEE J. Quantum. Electron. 40, 256-261 (2004).
    [CrossRef]

Appl. Phys. B

G. Schreiber, H. Suche, Y. L. Lee, W. Grundköter, V. Quiring, R. Ricken, and W. Sohler, �??Efficient Cascaded Difference Frequency Conversion in Periodically Poled Ti:LiNbO3Waveguides Using Pulsed and cw Pumping,�?? Appl. Phys. B Special Issue on Integrated Optics, (73), 501-504 (2001).

Appl. Phys. Lett.

C. Q. Xu, H. Okayama, and M. Kawahara, �??1.5 µm band efficient broadband wavelength conversion by difference freqeuncy generation in a periodically domain-inverted LiNbO3 channel waveguide,�?? Appl. Phys. Lett. 63, 3559-3561 (1993).
[CrossRef]

K. Gallo, G. Assanto, and G. Stegeman, �??Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,�?? Appl. Phys. Lett. 71, 1020-1022 (1997).
[CrossRef]

Y. L. Lee, Y.-C. Noh, C. Jung, T. J. Yu, B.-A. Yu, J. Lee, and D.-K. Ko, �??Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique�??, Appl. Phys. Lett. 86, 011104-1,3 (2005).

CLEO/Europe

Y. H. Min, W. Grundköter, J. H. Lee, Y. L. Lee, V. Quiring, and W. Sohler, �??Efficient, all-optical wavelength conversion and tuning of ps-pulses in a Ti:PPLN channel waveguide,�?? Proc. Conference Lasers and Electro - Optics (CLEO/Europe �??03), Munich/Germany, paper CE5-1-THU (2003).

IEEE J. Quantum. Electron.

B. Chen, and C.-Q. Xu, �??Analysis of novel cascaded �?(2) SFG+DFG wavelength conversions in quasi-phase-matched waveguides,�?? IEEE J. Quantum. Electron. 40, 256-261 (2004).
[CrossRef]

J. Lightwave Technol.

S. J. Yoo, �??Wavelength conversion technologies for WDM network applications,�?? J. Lightwave Technol. 14, 955-966 (1996).
[CrossRef]

OFC

Y. H. Min, J. H. Lee, Y. L. Lee, W. Grundköter, V. Quiring, and W. Sohler, �??Tunable all-optical wavelength conversion of 5-ps pulses by cascaded sum- and difference frequency generation (cSFG/DFG) in a Ti:PPNL waveguide,�?? OFC �??03, Atlanta, GA/USA, March, p. 767-768, paper FP4 (2003).

E. Yamazaki, A. Takada, J. Yamawaku, T. Morioka, O. Tadanaga, and M. Asobe, �??Simultaneous and Arbitrary Wavelength Conversion of WDM Signals Using Multiple Wavelength Quasi Phase Matched LiNbO3 waveguide,�?? OFC �??04, Los Angels/USA, paper FL6 (2004).

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Phase-matching (PM) characteristics for SFG in temperature gradient PPLN device. Pump1 can interacts with signals in shaded region. Vertical arrow lines indicate energy conservations.

Fig. 2.
Fig. 2.

Schematic diagram of the experimental setup; ECL : extended cavity semiconductor laser, FL : tunable fiber laser, ASE : amplified spontaneous emission, HP-EDFA : high power erbium-doped fiber amplifer, AWG : arrayed waveguide grating, OSA : optical spectrum analyzer, PC : polarization controller.

Fig. 3.
Fig. 3.

cSFG/DFG spectra for the (four) different temperature gradients. Amount of temperature gradient; (a) 0 °C (pump1:1528.88 nm, pump2:1557.92 nm). (b) 7.5 °C (pump1:1528.6 nm, pump2:1557.88 nm). (c) 12 °C (pump1:1526.8 nm, pump2:1554.8 nm). (d) 16.8 °C (pump1:1526.96 nm, pump2:1554.8 nm).

Fig. 4.
Fig. 4.

The SFG bandwidth as function of the temperature gradient of sample. The solid line and scatters indicate theoretical calculation and experimental data, respectively.

Fig. 5.
Fig. 5.

Conversion efficiency as function of pump2 wavelength.

Metrics