Abstract

In this paper a novel grating-like integrated optics device is proposed, the CrossWaveguide Grating (XWG). The device is based upon a modified configuration of a traditional ArrayedWaveguide Grating (AWG). The Arrayed Waveguides part is changed, as detailed along this document, giving the device both the ability of multi/demultiplexing and power splitting/coupling. Design examples and transfer function simulations show good agreement with the presented theory. Finally, some of the envisaged applications are outlined.

© 2005 Optical Society of America

Full Article  |  PDF Article
Related Articles
Analysis and design of arrayed waveguide gratings with MMI couplers

P. Muñoz, D. Pastor, and J. Capmany
Opt. Express 9(7) 328-338 (2001)

Improved AWG Fourier optics model

I. Molina-Fernández and J.G. Wangüemert-Pérez
Opt. Express 12(20) 4804-4821 (2004)

References

  • View by:
  • |
  • |
  • |

  1. M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett.,  24, 385–386 (1988).
    [Crossref]
  2. H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed waveguide grating,” J. Lightwave Technol. 12, 989–995 (1994).
    [Crossref]
  3. P. Muñoz, D. Pastor, and J. Capmany, “Modeling and design of Arrayed Waveguide Gratings,” J. Lightwave Technol. 20, 661–674 (2002).
    [Crossref]
  4. P. Muñoz, D. Pastor, J. Capmany, D. Ortega, A. Pujol, and J. Bonar, “AWGModel Validation through Measurement of Fabricated Devices,” J. Lightwave Technol. 22, 2763–2777 (2004).
    [Crossref]
  5. J.W. Goodman, “Introduction to Fourier Optics,” McGraw-Hill, ch. 5, pp. 83–90 (1988).
  6. P. Muñoz, D. Pastor, J. Capmany, and S. Sales, “Analytical and Numerical Analysis of Phase and Amplitude Errors in the Performance of Arrayed Waveguide Gratings,” J. Selected Topics in Quantum Elect. 8, 1130–1141 (2002).
    [Crossref]
  7. C. Dragone, “An NN optical multiplexer using a planar arrangement of two star couplers,” IEEE Photonics Tech. Lett. 3, 812–815 (1991).
    [Crossref]

2004 (1)

2002 (2)

P. Muñoz, D. Pastor, J. Capmany, and S. Sales, “Analytical and Numerical Analysis of Phase and Amplitude Errors in the Performance of Arrayed Waveguide Gratings,” J. Selected Topics in Quantum Elect. 8, 1130–1141 (2002).
[Crossref]

P. Muñoz, D. Pastor, and J. Capmany, “Modeling and design of Arrayed Waveguide Gratings,” J. Lightwave Technol. 20, 661–674 (2002).
[Crossref]

1994 (1)

H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed waveguide grating,” J. Lightwave Technol. 12, 989–995 (1994).
[Crossref]

1991 (1)

C. Dragone, “An NN optical multiplexer using a planar arrangement of two star couplers,” IEEE Photonics Tech. Lett. 3, 812–815 (1991).
[Crossref]

1988 (1)

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett.,  24, 385–386 (1988).
[Crossref]

Bonar, J.

Capmany, J.

Dragone, C.

C. Dragone, “An NN optical multiplexer using a planar arrangement of two star couplers,” IEEE Photonics Tech. Lett. 3, 812–815 (1991).
[Crossref]

Goodman, J.W.

J.W. Goodman, “Introduction to Fourier Optics,” McGraw-Hill, ch. 5, pp. 83–90 (1988).

Muñoz, P.

Nishi, I.

H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed waveguide grating,” J. Lightwave Technol. 12, 989–995 (1994).
[Crossref]

Ortega, D.

Pastor, D.

Pujol, A.

Sales, S.

P. Muñoz, D. Pastor, J. Capmany, and S. Sales, “Analytical and Numerical Analysis of Phase and Amplitude Errors in the Performance of Arrayed Waveguide Gratings,” J. Selected Topics in Quantum Elect. 8, 1130–1141 (2002).
[Crossref]

Smit, M. K.

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett.,  24, 385–386 (1988).
[Crossref]

Suzuki, S.

H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed waveguide grating,” J. Lightwave Technol. 12, 989–995 (1994).
[Crossref]

Takahashi, H.

H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed waveguide grating,” J. Lightwave Technol. 12, 989–995 (1994).
[Crossref]

Electron. Lett. (1)

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett.,  24, 385–386 (1988).
[Crossref]

IEEE Photonics Tech. Lett. (1)

C. Dragone, “An NN optical multiplexer using a planar arrangement of two star couplers,” IEEE Photonics Tech. Lett. 3, 812–815 (1991).
[Crossref]

J. Lightwave Technol. (3)

J. Selected Topics in Quantum Elect. (1)

P. Muñoz, D. Pastor, J. Capmany, and S. Sales, “Analytical and Numerical Analysis of Phase and Amplitude Errors in the Performance of Arrayed Waveguide Gratings,” J. Selected Topics in Quantum Elect. 8, 1130–1141 (2002).
[Crossref]

Other (1)

J.W. Goodman, “Introduction to Fourier Optics,” McGraw-Hill, ch. 5, pp. 83–90 (1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Layout of (a) a regular AWG and (b) the proposed XWG.

Fig. 2.
Fig. 2.

fM (u,a,b) -blue-, fM(u,a,b) -green- and fM+ (u,a,b) -red-.

Fig. 3.
Fig. 3.

Focusing properties of the device. Two beams moving in opposite directions are generated, one by each sub-array. For the design frequency ν 0 the beams cross at OW 0.

Fig. 4.
Fig. 4.

XWG normalised transfer function [dB] vs. frequency [THz] from the centre IW to OWs numbers -2 (cyan), -1 (red), 0 (green), 1 (blue dashed), 2 (magenta dashed).

Fig. 5.
Fig. 5.

Applications for the XWG.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

b i ( x 0 ) = 2 π w i 2 4 e ( x 0 w i ) 2
B i ( x 1 ) = 1 α 𝓕 { b i ( x 0 ) } u = x 1 α = 2 π w i 2 α 2 e ( π w i ( x 1 α ) 2 4
α = c L f n S ν
Δ L = m λ 0 n c = m c n c ν 0
f 1 ( x 1 ) = B 1 ( 0 ) + r = 1 N 1 2 B 1 ( r d w ) δ ( x 1 r d w ) + r = N 1 2 1 B 1 ( r d w ) δ ( x 1 r d w )
Δ ϕ r = ( L 0 + r Δ L ) β
f 2 A ( x 2 , ν ) = r = 1 N 1 2 B 1 ( r d w ) δ ( x 2 r d w ) e j β r Δ L
f 2 B ( x 2 , ν ) = r = N 1 2 1 B 1 ( r d w ) δ ( x 2 r d w ) e + j β r Δ L
f 2 A ( x 2 , ν ) = B 1 ( x 1 ) Π ( x 2 d w M 2 M d w ) r = δ ( x 2 r d w ) e j β r Δ L
f 2 B ( x 2 , ν ) = B 1 ( x 1 ) Π ( x 2 + d w M 2 M d w ) r = δ ( x 2 r d w ) e + j β r Δ L
f 3 ( x 3 , ν ) = r = f M ( x 3 + ν γ r α d w )
f 3 + ( x 3 , ν ) = r = f M + ( x 3 ν γ r α d w )
f M ( u , a , b ) = 0 a B 1 ( x ) e j 2 π u x x
f M + ( u , a , b ) = a 0 B 1 ( x ) e j 2 π u x x
f M ( u , a , b ) = 1 2 b π e ( π u b ) 2 [ erf ( a b + j π u b ) erf ( j π u b ) ]
f M + ( u , a , b ) = 1 2 b π e ( π u b ) 2 [ erf ( a b + j π u b ) + erf ( j π u b ) ]
γ = d w ν 0 α m
f M ( u , a , b ) = ( f M + ( u , a , b ) ) *
t 0 , q ( ν ) = + f 3 ( x 3 , ν ) b 0 ( x 3 q d 0 ) x 3

Metrics