Abstract

We propose and analyze a new type of four ports structure for ultra-compact waveguide splitting. This structure differs from most existing ultra-compact waveguide splitters by introducing complete symmetry between the input and output ports. Maximum overall throughput predicted is ~81% where reflection and crosstalk are <1%. A 2D photonic-crystal implementation concept. Is presented as well. Concept of operation and simulation results are provided. The trade-off between performances and functionality is discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. See <a href="http://jdj.mit.edu/">http://jdj.mit.edu/</a>, <a href="http://nanophotonics.ece.cornell.edu/research.html">http://nanophotonics.ece.cornell.edu/research.html</a>, <a href="http://www.its.caltech.edu/%7Eaphyariv/base.html">http://www.its.caltech.edu/%7Eaphyariv/base.html</a>.
  2. S. McNab, N. Moll, Y. Vlasov, �??Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,�?? Opt. Express 11, 2928-2939 (2003)
    [CrossRef]
  3. J. S. Forsei, P. R. Villeneuve, J. Ferrara, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L.C kimerling, H. I. Smith, E. P. Ippen, �??Photonic-bandgap microcavities in optical waveguides,�?? Nature 390, 143-145 (1997)
    [CrossRef]
  4. V. Almeida, R. Panepucci, M. Lipson, �??Nanotaper for compact mode conversion,�?? Opt. Lett. 28, 1302-1304 (2003)
    [CrossRef] [PubMed]
  5. Y. Vlasov, S. McNab, �??Losses in single-mode silicon-on-insulator strip waveguides and bends,�?? Opt. Express 12, 1622-1631 (2004)
    [CrossRef] [PubMed]
  6. A. Sakai, G. Hara, T. Baba, �??Propagation characteristics of ultrahigh- on silicon-on-insulator substrate,�?? Jap. J. App. Phy. 40, L383-385 (2001)
    [CrossRef]
  7. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus and J. D. Joannopoulos, �??High density integrated optics,�?? J. Lightwave Technol. 17, 1682-1692 (1999)
    [CrossRef]
  8. R. L. Espinola, R. U. Ahmad, F. Pizzuto, M. J. Steel, R. M. Osgood, �??A study of high-index contrast 900 waveguide bend structures,�?? Opt. Express 8, 517-528 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-9-517">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-9-517</a>.
    [CrossRef] [PubMed]
  9. R. U. Ahmad, F. Pizzuto, G. S. Camarada, R. L. Espinola, H. Rao, R. M. Osgood, �??Ultra-compact corner mirrors and T-branches in silicon-on-insulator,�?? IEEE Photon. Technol. Lett. 14, 65-67 (2002)
    [CrossRef]
  10. T. Fukazawa, T. Hirano, F. Ohno, T. Baba, �??Low loss intersection of Si photonic wire waveguides,�?? Jap. J. App. Phy. 43, 646-647 (2004).
    [CrossRef]
  11. C. Chen, H. Chien, P.G. Luan, �??Photonic crystals beam splitters,�?? App. Opt. 43, 6187-6190 (2004).
    [CrossRef]
  12. L.H. Frandsen, W. Bogarets, V. Wiaux, �??Ultralow-loss 3dB photonic crystal waveguide splitter,�?? Opt. Lett. 29, 1623-1625 (2004).
    [CrossRef] [PubMed]
  13. X. Yu, S. Fan, �??Bends and splitters for self-collimated beams in photonic-crystals,�?? App. Phy. Lett. 83, 3251-3253 (2003).
    [CrossRef]
  14. D. Pustai, S. Shi, C. Chen, A. Sharkawy, D. Prather, �??Analysis of splitters for self-collimated beams in planar photonic crystals,�?? Opt. Express 12, 1823-1831 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1823">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1823</a>.
    [CrossRef] [PubMed]
  15. S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, H. A. Haus and J. D. Joannopoulos, �??Elimination of cross talk in waveuide intersections,�?? Opt. Lett. 23, 1855-1857 (1998)
    [CrossRef]
  16. M. Tinkham, Group theory and quantum mechanics, (McGraw-Hill, New York, 1964).
  17. See <a href="http://www.rsoftdesign.com">http://www.rsoftdesign.com</a>.

App. Opt. (1)

C. Chen, H. Chien, P.G. Luan, �??Photonic crystals beam splitters,�?? App. Opt. 43, 6187-6190 (2004).
[CrossRef]

App. Phy. Lett. (1)

X. Yu, S. Fan, �??Bends and splitters for self-collimated beams in photonic-crystals,�?? App. Phy. Lett. 83, 3251-3253 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. U. Ahmad, F. Pizzuto, G. S. Camarada, R. L. Espinola, H. Rao, R. M. Osgood, �??Ultra-compact corner mirrors and T-branches in silicon-on-insulator,�?? IEEE Photon. Technol. Lett. 14, 65-67 (2002)
[CrossRef]

J. Lightwave Technol. (1)

Jap. J. App. Phy. (2)

A. Sakai, G. Hara, T. Baba, �??Propagation characteristics of ultrahigh- on silicon-on-insulator substrate,�?? Jap. J. App. Phy. 40, L383-385 (2001)
[CrossRef]

T. Fukazawa, T. Hirano, F. Ohno, T. Baba, �??Low loss intersection of Si photonic wire waveguides,�?? Jap. J. App. Phy. 43, 646-647 (2004).
[CrossRef]

Nature (1)

J. S. Forsei, P. R. Villeneuve, J. Ferrara, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L.C kimerling, H. I. Smith, E. P. Ippen, �??Photonic-bandgap microcavities in optical waveguides,�?? Nature 390, 143-145 (1997)
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Other (3)

See <a href="http://jdj.mit.edu/">http://jdj.mit.edu/</a>, <a href="http://nanophotonics.ece.cornell.edu/research.html">http://nanophotonics.ece.cornell.edu/research.html</a>, <a href="http://www.its.caltech.edu/%7Eaphyariv/base.html">http://www.its.caltech.edu/%7Eaphyariv/base.html</a>.

M. Tinkham, Group theory and quantum mechanics, (McGraw-Hill, New York, 1964).

See <a href="http://www.rsoftdesign.com">http://www.rsoftdesign.com</a>.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) WSJ structure scheme. Filled area (Green) indicates that the refractive index is n=3.46 while the background index is taken as n=1.

Fig. 2.
Fig. 2.

Schematic description of the symmetry of the possible resonant modes in the WSJ.

Fig. 3.
Fig. 3.

Refractive index contour map of the PC-WSJ.

Fig. 4.
Fig. 4.

ŷ polarized magnetic field distribution in the WSJ for 1.55 microns CW source. The color-map indicates the field’s normalized amplitude.

Fig. 5.
Fig. 5.

(a–c) present throughput spectral analysis of the WSJ. (a) x=40nm (b) x=50nm (c) x=60nm and d=56nm in all insets. Blue dashed-dotted line is the left turn throughput (port #2) and the green solid-asterick line is the forward throughput (port #3). (d) presents the reflection and crosstalk spectral analysis for x=50nm. Red dashed-dotted line is the right turn throughput, i.e., crosstalk (port #4) and the green solid-asterick line

Fig. 6.
Fig. 6.

3D Spectral analysis of the WSJ. (a) Left turn (blue dashed-line) and forward (green line-asterick) throughput (b) Crosstalk (red dashed-line) and reflection (black line-asterick).

Fig. 7.
Fig. 7.

Single port throughput at equal throughput point and Wavelength of equal throughput point Vs. resonator size - x.

Fig. 8.
Fig. 8.

Single port throughput at equal throughput point and Wavelength of equal throughput point Vs. slit size - d.

Fig. 9.
Fig. 9.

(a) ŷ polarization magnetic field in the PC-WSJ structure for 1.56µm CW source. The color-map indicate the field’s normalized amplitude. (b) Left turn (blue solid line) and forward (green line-asterick) throughput spectrum. (c) Crosstalk (red dashed - dotted) and reflection (black line-asterick) spectrum. Air slit thickness is 60nm.

Fig. 10.
Fig. 10.

- Overall throughput of both output ports of the WSJ (Blue line – left axis) and their power ratio (green dashed line – right axis) Vs. wavelength. The resonator size, x=50nm and the slit width, d=56nm.

Metrics