Abstract

An all-fiber chirped pulse amplification scheme based on Raman amplifiers and compression in air-core photonic bandgap fiber is demonstrated for the first time. Pulse chirping was achieved through nonlinear propagation in the amplifiers and a net compression factor of 53 was achieved. Output pulses presented sub-picosecond durations. Output peak powers approached 1 kW, being 3 orders of magnitude higher than those obtainable with Raman amplifiers without the chirped pulse amplification setup. The demonstrated scheme may instigate the use of fiber Raman amplifiers outside optical communications, as it is simple, robust, and may be built to operate at virtually any optical wavelength.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. P. Agrawal, Nonlinear fiber optics (Academic Press, San Diego, 1995).
  2. E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, and D. G. Fursa, �??Stimulated-Raman effect of femtosecond light pulses in counterpropagating and copropagating pump beams,�?? JETP Lett. 46, 482-485 (1987).
  3. D. Strickland and G. Mourou, �??Compression of amplified chirped optical pulses,�?? Opt. Commun. 56, 219-221 (1985).
    [CrossRef]
  4. A. Boskovic, M. J. Guy, S. V. Chernikov, J. R. Taylor, and R. Kashyap, �??All-fibre diode pumped, femtosecond chirped pulse amplification system,�?? Electron. Lett. 31, 877-878 (1995).
    [CrossRef]
  5. A. Galvanauskas, M. E. Fermann, and D. Harter, �??All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,�?? Appl. Phys. Lett. 66, 1053-1055 (1995).
    [CrossRef]
  6. . J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. S. J. Russel, �??Low loss (1.7 dB/km) hollow core photonic bandgap fiber,�?? in OFC Conference 2004 (The Optical Society of America, Washington, D.C., 2004), paper PDP24.
  7. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, �??Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,�?? Science 301, 1702-1704 (2003).
    [CrossRef] [PubMed]
  8. C. J. S. de Matos, J. R. Taylor, T. P. Hansen, K. P. Hansen, and J. Broeng, �??All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber,�?? Opt. Express 11, 2832-2837 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2832">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2832</a>
    [CrossRef] [PubMed]
  9. C. J. S. de Matos, R. E. Kennedy, and J. R. Taylor, �??20-kW peak power all-fiber 1.57-µm source based on compression in air-core photonic bandgap fiber, its frequency doubling, and broadband generation from 430 to 1450 nm,�?? Opt. Lett. 30, 436-438 (2005).
    [CrossRef] [PubMed]
  10. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tünnermann, �??All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber,�?? Opt. Express 11, 3332-3337 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3332">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3332</a>
    [CrossRef] [PubMed]
  11. C. Finot, G. Millot, C. Billet, and J. M. Dudley, �??Experimental generation of parabolic pulses via Raman amplification in optical fiber,�?? Opt. Express 11, 1547-1552 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1547">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1547</a>
    [CrossRef] [PubMed]
  12. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, �??Compression of optical pulses chirped by self-phase modulation in fibers,�?? J. Opt. Soc. Am. B 1, 139-149 (1984).
    [CrossRef]
  13. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, �??Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 µm,�?? Opt. Lett. 21, 1966-1968 (1996).
    [CrossRef] [PubMed]
  14. W. Rudolph, P. Dorn, X. Liu, N. Vretenar, and R. Stock, �??Microscopy with femtosecond laser pulses: applications in engineering, physics and biomedicine,�?? Appl. Surface Sci. 208-209, 327-332 (2003).
    [CrossRef]

Appl. Phys. Lett. (1)

A. Galvanauskas, M. E. Fermann, and D. Harter, �??All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,�?? Appl. Phys. Lett. 66, 1053-1055 (1995).
[CrossRef]

Appl. Surface Sci. (1)

W. Rudolph, P. Dorn, X. Liu, N. Vretenar, and R. Stock, �??Microscopy with femtosecond laser pulses: applications in engineering, physics and biomedicine,�?? Appl. Surface Sci. 208-209, 327-332 (2003).
[CrossRef]

Electron. Lett. (1)

A. Boskovic, M. J. Guy, S. V. Chernikov, J. R. Taylor, and R. Kashyap, �??All-fibre diode pumped, femtosecond chirped pulse amplification system,�?? Electron. Lett. 31, 877-878 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, and D. G. Fursa, �??Stimulated-Raman effect of femtosecond light pulses in counterpropagating and copropagating pump beams,�?? JETP Lett. 46, 482-485 (1987).

OFC Conference (1)

. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. S. J. Russel, �??Low loss (1.7 dB/km) hollow core photonic bandgap fiber,�?? in OFC Conference 2004 (The Optical Society of America, Washington, D.C., 2004), paper PDP24.

Opt. Commun. (1)

D. Strickland and G. Mourou, �??Compression of amplified chirped optical pulses,�?? Opt. Commun. 56, 219-221 (1985).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Science (1)

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, �??Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,�?? Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear fiber optics (Academic Press, San Diego, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup of the chirped pulse Raman amplification system.

Fig. 2.
Fig. 2.

Pulse spectra at the FRA2 input (blue) and at the PBF output (red).

Fig. 3.
Fig. 3.

Streak camera traces of the pulses at the input (blue) and output (green) of FRA2 and autocorrelation of the pulses at the PBF output (red).

Fig. 4.
Fig. 4.

Temporal profiles of the experimental (blue) and simulated (red) pulses after FRA2; simulated chirp profile (green) also shown.

Fig. 5.
Fig. 5.

Simulated intensity (blue) and chirp (red) profiles of the PBF output pulses; inset: experimental (blue) and simulated (red) PBF output pulse autocorrelations.

Metrics