Abstract

Planar dielectric microcavities embedded in woodpile void channel photonic crystals with stop bands in the stacking direction ranging from 4.3 to 4.8 µm in wavelength were generated by femtosecond-laser direct writing in a solid polymer. Infrared transmission spectra revealed fundamental and second-order modes crossing the stop gap region with a free spectral range of 430 nm on varying the microcavity size from 0.3 to 2.25 µm. Supercell calculations confirmed the cavity size dependence of highly localized cavity modes, whereas the angle of incidence was accounted for using a simple Fabry-Perot model.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987)
    [CrossRef] [PubMed]
  2. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987)
    [CrossRef] [PubMed]
  3. J. D. Joannopoulos, Photonic crystals: modeling the flow of light (Princeton University Press, U.S.A., 1995)
  4. S. G. Johnson and J. D. Joannopoulos, Photonic crystals, the road from theory to practice (Kluwer Academic Publishers, U.S.A., 2002)
  5. S. Y. Lin, V. M. Hietala, L. Wang, and E. D. Jones, �??Highly dispersive photonic band-gap prism,�?? Opt. Lett. 21, 1771-1773 (1996)
    [CrossRef] [PubMed]
  6. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, �??Superprism phenomena in photonic crystals,�?? Phys. Rev. B. 58, R10096 (1998).
    [CrossRef]
  7. A. Sharkawy, S. Shi, and D. W. Prather, �??Multichannel wavelength division multiplexing with photonic crystals,�?? Appl. Opt. 40, 2247-2252 (2001)
    [CrossRef]
  8. M. Koshiba, �??Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,�?? J. Lightwave Technology 19, 1970-1975 (2001).
    [CrossRef]
  9. B. Xu and H. Y. Ming, �??Experimental observation of bistability and instability in a two-dimensional nonlinear optical superlattice,�?? Phys. Rev. Lett. 71, 3959-3962 (1993)
    [CrossRef] [PubMed]
  10. S. F. Mingaleev and Y. S. Kivshar, �??Nonlinear transmission and light localization in photonic-crystal waveguides,�?? J. Opt. Soc. Am. B 19, 2241-2249 (2002)
    [CrossRef]
  11. M. Solja�?i�?, C. Luo, J. D. Joannopoulos, and S. Fan, �??Nonlinear photonic crystal microdevices for optical integration,�?? Opt. Lett. 28, 637-639 (2003)
    [CrossRef] [PubMed]
  12. N. Qi, E. Lidorikis, T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, �??A three- dimensional optical photonic crystal with designed point defects,�?? Nature 429, 538-542 (2004)
    [CrossRef] [PubMed]
  13. J. S. Foresi , P. R. Villeneuve, J. Ferrara, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen �??Photonic-bandgap microcavities in optical waveguides,�?? Nature 390, 143-145 (1997)
    [CrossRef]
  14. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, �??Control of light emission by 3D photonic crystals,�?? Science 305, 227-229 (2004)
    [CrossRef] [PubMed]
  15. M. M. Beaky, J. B. Burk, H. O. Everitt, M. A. Haider, and S. Venakides, �??Two-dimensional photonic crystal Fabry-Perot resonators with lossy dielectrics,�?? IEEE Trans. Microwave Theory Tech. 47, 2085-2091 (1999)
    [CrossRef]
  16. H. B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J. Y. Ye, S. Matsuo, and H. Misawa, �??Microcavities in polymeric photonic crystals,�?? Appl. Phys. Lett. 79, 1-3 (2001)
    [CrossRef]
  17. K. Wostyn, X. Y. Zhao, G. de Schaetzen, L. Hellemans, N. Matsuda, K. Clays, and A. Persoons, �??Insertion of a two-dimensional cavity into a self-assembled colloidal crystal,�?? Langmuir 19, 4465-4468 (2003)
    [CrossRef]
  18. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, �??Two-dimensional photonic band-gap defect mode laser,�?? Science 284, 1819-1821 (1999)
    [CrossRef] [PubMed]
  19. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, �??Electrically color-tunable defect mode lasing in one-dimensional photonic band-gap system containing liquid crystal,�?? Appl. Phys. Lett. 82, 3593-3595 (2003)
    [CrossRef]
  20. S. H. Kim, H. Y. Ryu, H. G. Park, G. H. Kim, and Y. S. Choi, �??Two-dimensional photonic crystal hexagonal waveguide ring laser,�?? Appl. Phys. Lett. 81, 2499-2501 (2002)
    [CrossRef]
  21. M. J. Ventura, M. Straub, and M. Gu, �??Void channel microstructures in resin solids as an efficient way to infrared photonic crystals,�?? Appl. Phys. Lett. 82, 1649-1651 (2003)
    [CrossRef]
  22. M. Straub, M. Ventura, and M. Gu, �??Multiple higher-order stop gaps in infrared polymer photonic crystals,�?? Phys. Rev. Lett. 91, 043901 (2003)
    [CrossRef] [PubMed]
  23. E. �?zbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, �??Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,�?? Phys. Rev. B. 50, 1945-1948 (1994)
    [CrossRef]
  24. E. Hecht and A. Zajac, Optics (Addison-Wesley Publishing Company, U.S.A., 2002), Chap. 9.
  25. H. Cao, D. B. Hall, J. M. Torkelson, and C. Q. Cao, �??Large enhancement of second harmonic generation in polymer films by microcavities,�?? Appl. Phys. Lett. 76, 538-540 (2000)
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

H. Cao, D. B. Hall, J. M. Torkelson, and C. Q. Cao, �??Large enhancement of second harmonic generation in polymer films by microcavities,�?? Appl. Phys. Lett. 76, 538-540 (2000)
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, �??Electrically color-tunable defect mode lasing in one-dimensional photonic band-gap system containing liquid crystal,�?? Appl. Phys. Lett. 82, 3593-3595 (2003)
[CrossRef]

S. H. Kim, H. Y. Ryu, H. G. Park, G. H. Kim, and Y. S. Choi, �??Two-dimensional photonic crystal hexagonal waveguide ring laser,�?? Appl. Phys. Lett. 81, 2499-2501 (2002)
[CrossRef]

M. J. Ventura, M. Straub, and M. Gu, �??Void channel microstructures in resin solids as an efficient way to infrared photonic crystals,�?? Appl. Phys. Lett. 82, 1649-1651 (2003)
[CrossRef]

H. B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J. Y. Ye, S. Matsuo, and H. Misawa, �??Microcavities in polymeric photonic crystals,�?? Appl. Phys. Lett. 79, 1-3 (2001)
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

M. M. Beaky, J. B. Burk, H. O. Everitt, M. A. Haider, and S. Venakides, �??Two-dimensional photonic crystal Fabry-Perot resonators with lossy dielectrics,�?? IEEE Trans. Microwave Theory Tech. 47, 2085-2091 (1999)
[CrossRef]

J. Lightwave Technology (1)

M. Koshiba, �??Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,�?? J. Lightwave Technology 19, 1970-1975 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

Langmuir (1)

K. Wostyn, X. Y. Zhao, G. de Schaetzen, L. Hellemans, N. Matsuda, K. Clays, and A. Persoons, �??Insertion of a two-dimensional cavity into a self-assembled colloidal crystal,�?? Langmuir 19, 4465-4468 (2003)
[CrossRef]

Nature (2)

N. Qi, E. Lidorikis, T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, �??A three- dimensional optical photonic crystal with designed point defects,�?? Nature 429, 538-542 (2004)
[CrossRef] [PubMed]

J. S. Foresi , P. R. Villeneuve, J. Ferrara, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen �??Photonic-bandgap microcavities in optical waveguides,�?? Nature 390, 143-145 (1997)
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, �??Superprism phenomena in photonic crystals,�?? Phys. Rev. B. 58, R10096 (1998).
[CrossRef]

Phys. Rev. B. (1)

E. �?zbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, �??Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,�?? Phys. Rev. B. 50, 1945-1948 (1994)
[CrossRef]

Phys. Rev. Lett. (4)

M. Straub, M. Ventura, and M. Gu, �??Multiple higher-order stop gaps in infrared polymer photonic crystals,�?? Phys. Rev. Lett. 91, 043901 (2003)
[CrossRef] [PubMed]

B. Xu and H. Y. Ming, �??Experimental observation of bistability and instability in a two-dimensional nonlinear optical superlattice,�?? Phys. Rev. Lett. 71, 3959-3962 (1993)
[CrossRef] [PubMed]

E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987)
[CrossRef] [PubMed]

S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987)
[CrossRef] [PubMed]

Science (2)

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, �??Control of light emission by 3D photonic crystals,�?? Science 305, 227-229 (2004)
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, �??Two-dimensional photonic band-gap defect mode laser,�?? Science 284, 1819-1821 (1999)
[CrossRef] [PubMed]

Other (3)

E. Hecht and A. Zajac, Optics (Addison-Wesley Publishing Company, U.S.A., 2002), Chap. 9.

J. D. Joannopoulos, Photonic crystals: modeling the flow of light (Princeton University Press, U.S.A., 1995)

S. G. Johnson and J. D. Joannopoulos, Photonic crystals, the road from theory to practice (Kluwer Academic Publishers, U.S.A., 2002)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Setup for femtosecond-laser direct writing. OPO, optical parametric oscillator with intracavity frequency doubler; DC, dichroic mirror; ND, neutral density filter; Oil 100×1.4 NA, oil immersion objective; CCD, charge-coupled device camera. (b) Infrared spectroscopy: reflective objective with a mask allowing for a light cone of 5° half angle. (c) Woodpile-type photonic crystal lattice consisting of elliptical void channels. (d) Brillouin zone of the face-centred tetragonal lattice. (e) Photonic band structure featuring a pronounced stop gap about the stacking direction Γ-X’ at normalized frequency 0.30 (black bar).

Fig. 2.
Fig. 2.

(a) Sketch of a twenty four-layer void channel woodpile structure with a microcavity of size Δd in its centre. (b) Supercell calculation of photonic bands for a structure with a cavity size Δd of 2.1 µm. Shaded regions are frequencies outside the bandgap. The flat band within the bandgap denotes the cavity mode. (c) Infrared transmission spectra in the stacking direction for Δd from 0.3 to 2.25 µm. (d) Variation of experimental (circles) and calculated (triangles) cavity mode wavelengths with the cavity size.

Fig. 3.
Fig. 3.

With increasing angle of incidence the cavity modes shift to shorter wavelengths. (a) Infrared spectra for a cavity size of 0.6 µm. (b) Dependence of the mode A wavelength on the angle of incidence. (c) Linear fit using a simple Fabry-Perot model.

Fig. 4.
Fig. 4.

(a–h) Energy density of modes A and B calculated in a vertical plane for a variety of cavity sizes. Overlaid in thin black on panels b and f is the outline of the crystal structure. (i,j) Mode profiles along the stacking direction. The grey areas correspond to horizontal planes entirely filled with dielectric. Close to the midgap wavelength (mode A: Δd=0.8 µm, mode B: 2.1 µm) modes are localized more strongly within the cavity than close to the stop band edges.

Metrics