Abstract

A simplified method for holographic embossing tool production is presented. Surface relief diffraction gratings are holographically recorded in pullulan sensitized with ammonium dichromate (DCP). The surface structure is copied into dental photopolymer composite by direct contact and subsequent photo-polymerization. It was found that arbitrary surface micro-pattern can be replicated. Due to its excellent mechanical and thermal properties, micro-patterned dental composite can be further used as an embossing tool for mass production of holograms.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Rudolf L. van Renesse, Optical Document Security (Artech House, Boston·London, 1998).
  2. R. Bartolini, W. Hannan, D. Karlsons, and M. Lurie, “Embossed Hologram Motion Pictures for Television Playback,” Appl. Opt. 9, 2283–2290 (1970).
    [Crossref] [PubMed]
  3. F. Iwata and Jumpei Tsujiuchi, “Characteristics of a Photoresist Hologram and Its Replica,” Appl. Opt. 13, 1327–1336 (1974).
    [Crossref] [PubMed]
  4. A. D. Galperin, I. V. Kalinina, L. V. Selyavko, and V. P. Smaev, “Obtaining relief-phase holograms on PE-2 photographic plates and their copying,” Opt. Spectrosc. (USSR) 60, 644–645 (1986).
  5. S. N. Koreshev and S. V. Gil, “Profile of low frequency relief hologram structures obtained on thin layers of PE- 2 photoemulsion,” Opt. Spectrosc. (USSR) 68, 247–249 (1990).
  6. H. J. Bjelkhagen, Silver Halide Recording Materials for Holography and Their Processing, Springer Series in Optical Sciences 66 (Springer-Verlag, Berlin, 1993).
  7. L. H. Lin and H. L. Beauchamp, “Write-read-erase in situ optical memory using thermoplastic holograms,” Appl. Opt. 9, 2088–20 (1970).
    [Crossref] [PubMed]
  8. S. R. LaBelle and B. L. Bohn, “In Line Microembossing, Laminating, Printing and Diecutting,” U.S. Patent 6,694,872 (2004).
  9. M. W. Schaefer, T. L. Levandusky, S. Sheu, R. B. Larsen, and N. C. Whittle, “Techniques for transferring holograms into metal surfaces,” U.S. Patent 6,006,415 (1999).
  10. L. J. Heyderman, H. Schift, C. David, J. Gobrecht, and T. Schweiyer, “Flow behavior of thin polymer films used for hot embossing lithography,” Microelectron. Eng. 54, 229–245 (2000).
    [Crossref]
  11. U. S. Department of Health and Human Services, Food and Drug, Center for Devices and Radiological Health Administration, “Dental Composites — Premarket Notification,” 1996, http://www.fda.gov/cdrh/ode/642.pdf.
  12. N. Moszner and S. Klapdohr, “Nanotechnology for dental composites,” Int. J. Nanotechnology 1, 130–156 (2004).
  13. Biomaterials properties database at the University of Michigan, www.lib.umich.edu/dentlib/Dental_tables/.
  14. T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem. Mater. 12, 1431–1438 (2000).
    [Crossref]
  15. S. Bartkiewicz, A. Januszko, A. Miniewicz, and J. Parka, “Dye-doped liquid crystal composite for real time holography,” Pure. Appl. Opt. 5, 799–809 (1996).
    [Crossref]
  16. M. D. Rahn, D. P. West, K. Khand, J. D. Shakos, and R. M. Shelby, “Digital holographic data storage in a high-performance photorefractive polymer composites,” Appl. Opt. 40, 3395–3401 (2001).
    [Crossref]
  17. Y. Tomita and H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photoplymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83, 410–412 (2003).
    [Crossref]
  18. N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81, 4121–4123 (2002).
    [Crossref]
  19. N. Suzuki and Y. Tomita, “Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%,” Appl. Opt. 43, 2125–2129 (2004).
    [Crossref] [PubMed]
  20. F. G. Robinson, F. A. Rueggeber, and P. E. Lockwood, “Thermal stability of direct dental esthetic restorative materials at elevated temperatures,” J. Forensic Sci. 43, 1163–1167 (1998).
    [PubMed]
  21. T. Sano, Y. Uemura, and A. Furuta, “Photosensitive resin composition containing pullulan or esters thereof,” U. S. Patent 3,960,685 (1976).
  22. Dejan Pantelić, Svetlana Savić, and Dragica Jakovljević, “Dichromated pullulan as a novel photosensitive holographic material,” Opt. Lett. 15, 807–809 (1998).
    [Crossref]
  23. Svetlana Savić, Dejan Pantelić, and Dragica Jakovljević, “Real-time and postprocessing holographic effects in dichromated pullulan,” Appl. Opt. 41, 4484–4488 (2002).
    [Crossref] [PubMed]
  24. Svetlana Savić, Dejan Pantelić, and Dragica Jakovljević, “Dichromated Pullulan: Real-time Effects and Holographic Properties,” presented at the International Conference “Optical Holography and its Applications”, Ukraine, 26–29 Sept. 2000.
  25. Y.W. Zhang, W.G. Zhu, and F.T.S Yu, “Rainbow holographic aberrations and the bandwidth requirements,” Appl. Opt. 22, 164–169 (1983).
    [Crossref] [PubMed]
  26. C-K. Lee, J.W-J. Wu, S-L. Yeh, C-W. Tu, Y-A. Han, E.H-Z. Liao, L.Y-Y. Chang, I-E. Tsai, H-H. Lin, J.C-T. Hsieh, and J.T-W. Lee, “Optical configuration and color-representation range of a variable-pitch dot matrix holographic printer,” Appl. Opt. 39, 40–53 (2000).
    [Crossref]
  27. V. Fano, I. Ortalli, S. Pizzi, and M. Bonanini, “Polymerization shrinkage of microfilled composites determined by laser beam scanning,” Biomaterials 18, 467–470(1997).
    [Crossref] [PubMed]
  28. L. M. Averina and Yu. S. Milavskii, “Refractometric method of determining the shrinkage of polymers under UV hardening,” J. Opt. Technol. 71, (2), 115–116 (1997).
    [Crossref]

2004 (2)

2003 (1)

Y. Tomita and H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photoplymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83, 410–412 (2003).
[Crossref]

2002 (2)

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81, 4121–4123 (2002).
[Crossref]

Svetlana Savić, Dejan Pantelić, and Dragica Jakovljević, “Real-time and postprocessing holographic effects in dichromated pullulan,” Appl. Opt. 41, 4484–4488 (2002).
[Crossref] [PubMed]

2001 (1)

2000 (3)

C-K. Lee, J.W-J. Wu, S-L. Yeh, C-W. Tu, Y-A. Han, E.H-Z. Liao, L.Y-Y. Chang, I-E. Tsai, H-H. Lin, J.C-T. Hsieh, and J.T-W. Lee, “Optical configuration and color-representation range of a variable-pitch dot matrix holographic printer,” Appl. Opt. 39, 40–53 (2000).
[Crossref]

L. J. Heyderman, H. Schift, C. David, J. Gobrecht, and T. Schweiyer, “Flow behavior of thin polymer films used for hot embossing lithography,” Microelectron. Eng. 54, 229–245 (2000).
[Crossref]

T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem. Mater. 12, 1431–1438 (2000).
[Crossref]

1998 (2)

F. G. Robinson, F. A. Rueggeber, and P. E. Lockwood, “Thermal stability of direct dental esthetic restorative materials at elevated temperatures,” J. Forensic Sci. 43, 1163–1167 (1998).
[PubMed]

Dejan Pantelić, Svetlana Savić, and Dragica Jakovljević, “Dichromated pullulan as a novel photosensitive holographic material,” Opt. Lett. 15, 807–809 (1998).
[Crossref]

1997 (2)

L. M. Averina and Yu. S. Milavskii, “Refractometric method of determining the shrinkage of polymers under UV hardening,” J. Opt. Technol. 71, (2), 115–116 (1997).
[Crossref]

V. Fano, I. Ortalli, S. Pizzi, and M. Bonanini, “Polymerization shrinkage of microfilled composites determined by laser beam scanning,” Biomaterials 18, 467–470(1997).
[Crossref] [PubMed]

1996 (1)

S. Bartkiewicz, A. Januszko, A. Miniewicz, and J. Parka, “Dye-doped liquid crystal composite for real time holography,” Pure. Appl. Opt. 5, 799–809 (1996).
[Crossref]

1990 (1)

S. N. Koreshev and S. V. Gil, “Profile of low frequency relief hologram structures obtained on thin layers of PE- 2 photoemulsion,” Opt. Spectrosc. (USSR) 68, 247–249 (1990).

1986 (1)

A. D. Galperin, I. V. Kalinina, L. V. Selyavko, and V. P. Smaev, “Obtaining relief-phase holograms on PE-2 photographic plates and their copying,” Opt. Spectrosc. (USSR) 60, 644–645 (1986).

1983 (1)

1974 (1)

1970 (2)

Averina, L. M.

Bartkiewicz, S.

S. Bartkiewicz, A. Januszko, A. Miniewicz, and J. Parka, “Dye-doped liquid crystal composite for real time holography,” Pure. Appl. Opt. 5, 799–809 (1996).
[Crossref]

Bartolini, R.

Beauchamp, H. L.

Bjelkhagen, H. J.

H. J. Bjelkhagen, Silver Halide Recording Materials for Holography and Their Processing, Springer Series in Optical Sciences 66 (Springer-Verlag, Berlin, 1993).

Bohn, B. L.

S. R. LaBelle and B. L. Bohn, “In Line Microembossing, Laminating, Printing and Diecutting,” U.S. Patent 6,694,872 (2004).

Bonanini, M.

V. Fano, I. Ortalli, S. Pizzi, and M. Bonanini, “Polymerization shrinkage of microfilled composites determined by laser beam scanning,” Biomaterials 18, 467–470(1997).
[Crossref] [PubMed]

Boyd, J. E.

T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem. Mater. 12, 1431–1438 (2000).
[Crossref]

Chang, L.Y-Y.

Colvin, V. L.

T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem. Mater. 12, 1431–1438 (2000).
[Crossref]

David, C.

L. J. Heyderman, H. Schift, C. David, J. Gobrecht, and T. Schweiyer, “Flow behavior of thin polymer films used for hot embossing lithography,” Microelectron. Eng. 54, 229–245 (2000).
[Crossref]

Fano, V.

V. Fano, I. Ortalli, S. Pizzi, and M. Bonanini, “Polymerization shrinkage of microfilled composites determined by laser beam scanning,” Biomaterials 18, 467–470(1997).
[Crossref] [PubMed]

Furuta, A.

T. Sano, Y. Uemura, and A. Furuta, “Photosensitive resin composition containing pullulan or esters thereof,” U. S. Patent 3,960,685 (1976).

Galperin, A. D.

A. D. Galperin, I. V. Kalinina, L. V. Selyavko, and V. P. Smaev, “Obtaining relief-phase holograms on PE-2 photographic plates and their copying,” Opt. Spectrosc. (USSR) 60, 644–645 (1986).

Gil, S. V.

S. N. Koreshev and S. V. Gil, “Profile of low frequency relief hologram structures obtained on thin layers of PE- 2 photoemulsion,” Opt. Spectrosc. (USSR) 68, 247–249 (1990).

Gobrecht, J.

L. J. Heyderman, H. Schift, C. David, J. Gobrecht, and T. Schweiyer, “Flow behavior of thin polymer films used for hot embossing lithography,” Microelectron. Eng. 54, 229–245 (2000).
[Crossref]

Han, Y-A.

Hannan, W.

Heyderman, L. J.

L. J. Heyderman, H. Schift, C. David, J. Gobrecht, and T. Schweiyer, “Flow behavior of thin polymer films used for hot embossing lithography,” Microelectron. Eng. 54, 229–245 (2000).
[Crossref]

Hsieh, J.C-T.

Iwata, F.

Jakovljevic, Dragica

Svetlana Savić, Dejan Pantelić, and Dragica Jakovljević, “Real-time and postprocessing holographic effects in dichromated pullulan,” Appl. Opt. 41, 4484–4488 (2002).
[Crossref] [PubMed]

Dejan Pantelić, Svetlana Savić, and Dragica Jakovljević, “Dichromated pullulan as a novel photosensitive holographic material,” Opt. Lett. 15, 807–809 (1998).
[Crossref]

Svetlana Savić, Dejan Pantelić, and Dragica Jakovljević, “Dichromated Pullulan: Real-time Effects and Holographic Properties,” presented at the International Conference “Optical Holography and its Applications”, Ukraine, 26–29 Sept. 2000.

Januszko, A.

S. Bartkiewicz, A. Januszko, A. Miniewicz, and J. Parka, “Dye-doped liquid crystal composite for real time holography,” Pure. Appl. Opt. 5, 799–809 (1996).
[Crossref]

Kalinina, I. V.

A. D. Galperin, I. V. Kalinina, L. V. Selyavko, and V. P. Smaev, “Obtaining relief-phase holograms on PE-2 photographic plates and their copying,” Opt. Spectrosc. (USSR) 60, 644–645 (1986).

Karlsons, D.

Khand, K.

Klapdohr, S.

N. Moszner and S. Klapdohr, “Nanotechnology for dental composites,” Int. J. Nanotechnology 1, 130–156 (2004).

Kojima, T.

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81, 4121–4123 (2002).
[Crossref]

Koreshev, S. N.

S. N. Koreshev and S. V. Gil, “Profile of low frequency relief hologram structures obtained on thin layers of PE- 2 photoemulsion,” Opt. Spectrosc. (USSR) 68, 247–249 (1990).

LaBelle, S. R.

S. R. LaBelle and B. L. Bohn, “In Line Microembossing, Laminating, Printing and Diecutting,” U.S. Patent 6,694,872 (2004).

Larsen, R. B.

M. W. Schaefer, T. L. Levandusky, S. Sheu, R. B. Larsen, and N. C. Whittle, “Techniques for transferring holograms into metal surfaces,” U.S. Patent 6,006,415 (1999).

Lee, C-K.

Lee, J.T-W.

Levandusky, T. L.

M. W. Schaefer, T. L. Levandusky, S. Sheu, R. B. Larsen, and N. C. Whittle, “Techniques for transferring holograms into metal surfaces,” U.S. Patent 6,006,415 (1999).

Liao, E.H-Z.

Lin, H-H.

Lin, L. H.

Lockwood, P. E.

F. G. Robinson, F. A. Rueggeber, and P. E. Lockwood, “Thermal stability of direct dental esthetic restorative materials at elevated temperatures,” J. Forensic Sci. 43, 1163–1167 (1998).
[PubMed]

Lurie, M.

Milavskii, Yu. S.

Miniewicz, A.

S. Bartkiewicz, A. Januszko, A. Miniewicz, and J. Parka, “Dye-doped liquid crystal composite for real time holography,” Pure. Appl. Opt. 5, 799–809 (1996).
[Crossref]

Moszner, N.

N. Moszner and S. Klapdohr, “Nanotechnology for dental composites,” Int. J. Nanotechnology 1, 130–156 (2004).

Nishibiraki, H.

Y. Tomita and H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photoplymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83, 410–412 (2003).
[Crossref]

Ortalli, I.

V. Fano, I. Ortalli, S. Pizzi, and M. Bonanini, “Polymerization shrinkage of microfilled composites determined by laser beam scanning,” Biomaterials 18, 467–470(1997).
[Crossref] [PubMed]

Pantelic, Dejan

Svetlana Savić, Dejan Pantelić, and Dragica Jakovljević, “Real-time and postprocessing holographic effects in dichromated pullulan,” Appl. Opt. 41, 4484–4488 (2002).
[Crossref] [PubMed]

Dejan Pantelić, Svetlana Savić, and Dragica Jakovljević, “Dichromated pullulan as a novel photosensitive holographic material,” Opt. Lett. 15, 807–809 (1998).
[Crossref]

Svetlana Savić, Dejan Pantelić, and Dragica Jakovljević, “Dichromated Pullulan: Real-time Effects and Holographic Properties,” presented at the International Conference “Optical Holography and its Applications”, Ukraine, 26–29 Sept. 2000.

Parka, J.

S. Bartkiewicz, A. Januszko, A. Miniewicz, and J. Parka, “Dye-doped liquid crystal composite for real time holography,” Pure. Appl. Opt. 5, 799–809 (1996).
[Crossref]

Pizzi, S.

V. Fano, I. Ortalli, S. Pizzi, and M. Bonanini, “Polymerization shrinkage of microfilled composites determined by laser beam scanning,” Biomaterials 18, 467–470(1997).
[Crossref] [PubMed]

Rahn, M. D.

Robinson, F. G.

F. G. Robinson, F. A. Rueggeber, and P. E. Lockwood, “Thermal stability of direct dental esthetic restorative materials at elevated temperatures,” J. Forensic Sci. 43, 1163–1167 (1998).
[PubMed]

Rueggeber, F. A.

F. G. Robinson, F. A. Rueggeber, and P. E. Lockwood, “Thermal stability of direct dental esthetic restorative materials at elevated temperatures,” J. Forensic Sci. 43, 1163–1167 (1998).
[PubMed]

Sano, T.

T. Sano, Y. Uemura, and A. Furuta, “Photosensitive resin composition containing pullulan or esters thereof,” U. S. Patent 3,960,685 (1976).

Savic, Svetlana

Svetlana Savić, Dejan Pantelić, and Dragica Jakovljević, “Real-time and postprocessing holographic effects in dichromated pullulan,” Appl. Opt. 41, 4484–4488 (2002).
[Crossref] [PubMed]

Dejan Pantelić, Svetlana Savić, and Dragica Jakovljević, “Dichromated pullulan as a novel photosensitive holographic material,” Opt. Lett. 15, 807–809 (1998).
[Crossref]

Svetlana Savić, Dejan Pantelić, and Dragica Jakovljević, “Dichromated Pullulan: Real-time Effects and Holographic Properties,” presented at the International Conference “Optical Holography and its Applications”, Ukraine, 26–29 Sept. 2000.

Schaefer, M. W.

M. W. Schaefer, T. L. Levandusky, S. Sheu, R. B. Larsen, and N. C. Whittle, “Techniques for transferring holograms into metal surfaces,” U.S. Patent 6,006,415 (1999).

Schift, H.

L. J. Heyderman, H. Schift, C. David, J. Gobrecht, and T. Schweiyer, “Flow behavior of thin polymer films used for hot embossing lithography,” Microelectron. Eng. 54, 229–245 (2000).
[Crossref]

Schweiyer, T.

L. J. Heyderman, H. Schift, C. David, J. Gobrecht, and T. Schweiyer, “Flow behavior of thin polymer films used for hot embossing lithography,” Microelectron. Eng. 54, 229–245 (2000).
[Crossref]

Selyavko, L. V.

A. D. Galperin, I. V. Kalinina, L. V. Selyavko, and V. P. Smaev, “Obtaining relief-phase holograms on PE-2 photographic plates and their copying,” Opt. Spectrosc. (USSR) 60, 644–645 (1986).

Shakos, J. D.

Shelby, R. M.

Sheu, S.

M. W. Schaefer, T. L. Levandusky, S. Sheu, R. B. Larsen, and N. C. Whittle, “Techniques for transferring holograms into metal surfaces,” U.S. Patent 6,006,415 (1999).

Smaev, V. P.

A. D. Galperin, I. V. Kalinina, L. V. Selyavko, and V. P. Smaev, “Obtaining relief-phase holograms on PE-2 photographic plates and their copying,” Opt. Spectrosc. (USSR) 60, 644–645 (1986).

Suzuki, N.

N. Suzuki and Y. Tomita, “Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%,” Appl. Opt. 43, 2125–2129 (2004).
[Crossref] [PubMed]

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81, 4121–4123 (2002).
[Crossref]

Tomita, Y.

N. Suzuki and Y. Tomita, “Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%,” Appl. Opt. 43, 2125–2129 (2004).
[Crossref] [PubMed]

Y. Tomita and H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photoplymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83, 410–412 (2003).
[Crossref]

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81, 4121–4123 (2002).
[Crossref]

Trentler, T. J.

T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem. Mater. 12, 1431–1438 (2000).
[Crossref]

Tsai, I-E.

Tsujiuchi, Jumpei

Tu, C-W.

Uemura, Y.

T. Sano, Y. Uemura, and A. Furuta, “Photosensitive resin composition containing pullulan or esters thereof,” U. S. Patent 3,960,685 (1976).

van Renesse, Rudolf L.

Rudolf L. van Renesse, Optical Document Security (Artech House, Boston·London, 1998).

West, D. P.

Whittle, N. C.

M. W. Schaefer, T. L. Levandusky, S. Sheu, R. B. Larsen, and N. C. Whittle, “Techniques for transferring holograms into metal surfaces,” U.S. Patent 6,006,415 (1999).

Wu, J.W-J.

Yeh, S-L.

Yu, F.T.S

Zhang, Y.W.

Zhu, W.G.

Appl. Opt. (8)

R. Bartolini, W. Hannan, D. Karlsons, and M. Lurie, “Embossed Hologram Motion Pictures for Television Playback,” Appl. Opt. 9, 2283–2290 (1970).
[Crossref] [PubMed]

F. Iwata and Jumpei Tsujiuchi, “Characteristics of a Photoresist Hologram and Its Replica,” Appl. Opt. 13, 1327–1336 (1974).
[Crossref] [PubMed]

L. H. Lin and H. L. Beauchamp, “Write-read-erase in situ optical memory using thermoplastic holograms,” Appl. Opt. 9, 2088–20 (1970).
[Crossref] [PubMed]

M. D. Rahn, D. P. West, K. Khand, J. D. Shakos, and R. M. Shelby, “Digital holographic data storage in a high-performance photorefractive polymer composites,” Appl. Opt. 40, 3395–3401 (2001).
[Crossref]

N. Suzuki and Y. Tomita, “Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%,” Appl. Opt. 43, 2125–2129 (2004).
[Crossref] [PubMed]

Svetlana Savić, Dejan Pantelić, and Dragica Jakovljević, “Real-time and postprocessing holographic effects in dichromated pullulan,” Appl. Opt. 41, 4484–4488 (2002).
[Crossref] [PubMed]

Y.W. Zhang, W.G. Zhu, and F.T.S Yu, “Rainbow holographic aberrations and the bandwidth requirements,” Appl. Opt. 22, 164–169 (1983).
[Crossref] [PubMed]

C-K. Lee, J.W-J. Wu, S-L. Yeh, C-W. Tu, Y-A. Han, E.H-Z. Liao, L.Y-Y. Chang, I-E. Tsai, H-H. Lin, J.C-T. Hsieh, and J.T-W. Lee, “Optical configuration and color-representation range of a variable-pitch dot matrix holographic printer,” Appl. Opt. 39, 40–53 (2000).
[Crossref]

Appl. Phys. Lett. (2)

Y. Tomita and H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photoplymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83, 410–412 (2003).
[Crossref]

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81, 4121–4123 (2002).
[Crossref]

Biomaterials (1)

V. Fano, I. Ortalli, S. Pizzi, and M. Bonanini, “Polymerization shrinkage of microfilled composites determined by laser beam scanning,” Biomaterials 18, 467–470(1997).
[Crossref] [PubMed]

Chem. Mater. (1)

T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem. Mater. 12, 1431–1438 (2000).
[Crossref]

Int. J. Nanotechnology (1)

N. Moszner and S. Klapdohr, “Nanotechnology for dental composites,” Int. J. Nanotechnology 1, 130–156 (2004).

J. Forensic Sci. (1)

F. G. Robinson, F. A. Rueggeber, and P. E. Lockwood, “Thermal stability of direct dental esthetic restorative materials at elevated temperatures,” J. Forensic Sci. 43, 1163–1167 (1998).
[PubMed]

J. Opt. Technol. (1)

Microelectron. Eng. (1)

L. J. Heyderman, H. Schift, C. David, J. Gobrecht, and T. Schweiyer, “Flow behavior of thin polymer films used for hot embossing lithography,” Microelectron. Eng. 54, 229–245 (2000).
[Crossref]

Opt. Lett. (1)

Opt. Spectrosc. (USSR) (2)

A. D. Galperin, I. V. Kalinina, L. V. Selyavko, and V. P. Smaev, “Obtaining relief-phase holograms on PE-2 photographic plates and their copying,” Opt. Spectrosc. (USSR) 60, 644–645 (1986).

S. N. Koreshev and S. V. Gil, “Profile of low frequency relief hologram structures obtained on thin layers of PE- 2 photoemulsion,” Opt. Spectrosc. (USSR) 68, 247–249 (1990).

Pure. Appl. Opt. (1)

S. Bartkiewicz, A. Januszko, A. Miniewicz, and J. Parka, “Dye-doped liquid crystal composite for real time holography,” Pure. Appl. Opt. 5, 799–809 (1996).
[Crossref]

Other (8)

Biomaterials properties database at the University of Michigan, www.lib.umich.edu/dentlib/Dental_tables/.

T. Sano, Y. Uemura, and A. Furuta, “Photosensitive resin composition containing pullulan or esters thereof,” U. S. Patent 3,960,685 (1976).

H. J. Bjelkhagen, Silver Halide Recording Materials for Holography and Their Processing, Springer Series in Optical Sciences 66 (Springer-Verlag, Berlin, 1993).

U. S. Department of Health and Human Services, Food and Drug, Center for Devices and Radiological Health Administration, “Dental Composites — Premarket Notification,” 1996, http://www.fda.gov/cdrh/ode/642.pdf.

S. R. LaBelle and B. L. Bohn, “In Line Microembossing, Laminating, Printing and Diecutting,” U.S. Patent 6,694,872 (2004).

M. W. Schaefer, T. L. Levandusky, S. Sheu, R. B. Larsen, and N. C. Whittle, “Techniques for transferring holograms into metal surfaces,” U.S. Patent 6,006,415 (1999).

Rudolf L. van Renesse, Optical Document Security (Artech House, Boston·London, 1998).

Svetlana Savić, Dejan Pantelić, and Dragica Jakovljević, “Dichromated Pullulan: Real-time Effects and Holographic Properties,” presented at the International Conference “Optical Holography and its Applications”, Ukraine, 26–29 Sept. 2000.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) The AFM image of original DCP diffraction grating (top) with period of 1.15 µm and its line profile on a reduced scale (bottom) (b) The AFM image of dental composite (“Helio progress”) diffraction grating copy (top) with period of 1.14 µm and its line profile on a reduced scale (bottom). In both cases the scan size is 20×20 µm.

Fig. 2.
Fig. 2.

(a) FFT of AFM image of original DCP grating (top) with period of 1.15 µm and its line profile (bottom) (see Fig 1(a)). (b) FFT of AFM image of dental composite diffraction grating copy (top) with period of 1.14 µm and its line profile (bottom) (see Fig 1(b)).

Fig. 3.
Fig. 3.

(a) The AFM image of dental composite (“Herculite xrv”) diffraction grating with period of 3.10 µm and (b) its line profile on a reduced scale.

Fig. 4.
Fig. 4.

Average relief depth versus spatial frequency.

Fig. 5.
Fig. 5.

Diffraction efficiency of DCP original and composite copy versus spatial frequency

Metrics