Abstract

A simplified method for holographic embossing tool production is presented. Surface relief diffraction gratings are holographically recorded in pullulan sensitized with ammonium dichromate (DCP). The surface structure is copied into dental photopolymer composite by direct contact and subsequent photo-polymerization. It was found that arbitrary surface micro-pattern can be replicated. Due to its excellent mechanical and thermal properties, micro-patterned dental composite can be further used as an embossing tool for mass production of holograms.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Rudolf L. van Renesse, Optical Document Security (Artech House, Boston?London, 1998).
  2. R. Bartolini, W. Hannan, D. Karlsons, and M. Lurie, �Embossed Hologram Motion Pictures for Television Playback,� Appl. Opt. 9, 2283-2290 (1970).
    [CrossRef] [PubMed]
  3. F. Iwata and Jumpei Tsujiuchi, �Characteristics of a Photoresist Hologram and Its Replica,� Appl. Opt. 13, 1327-1336 (1974).
    [CrossRef] [PubMed]
  4. A. D. Galperin, I. V. Kalinina, L. V. Selyavko, V. P. Smaev, �Obtaining relief-phase holograms on PE-2 photographic plates and their copying,� Opt. Spectrosc. (USSR) 60, 644-645 (1986).
  5. S. N. Koreshev and S. V. Gil, �Profile of low frequency relief hologram structures obtained on thin layers of PE- 2 photoemulsion,� Opt. Spectrosc. (USSR) 68, 247-249 (1990).
  6. H. J. Bjelkhagen, Silver Halide Recording Materials for Holography and Their Processing, Springer Series in Optical Sciences 66 (Springer-Verlag, Berlin, 1993).
  7. L. H. Lin and H. L. Beauchamp,"Write-read-erase in situ optical memory using thermoplastic holograms,� Appl. Opt. 9, 2088-20 (1970).
    [CrossRef] [PubMed]
  8. S. R. LaBelle, B. L. Bohn, �In Line Microembossing, Laminating, Printing and Diecutting,� U.S. Patent 6, 694, 872 (2004).
  9. M. W. Schaefer, T. L. Levandusky, S. Sheu, R. B. Larsen, N. C. Whittle, �Techniques for transferring holograms into metal surfaces,� U.S. Patent 6, 006, 415 (1999).
  10. L. J. Heyderman, H. Schift, C. David, J. Gobrecht, T. Schweiyer, �Flow behavior of thin polymer films used for hot embossing lithography,� Microelectron. Eng. 54, 229-245 (2000).
    [CrossRef]
  11. U. S. Department of Health and Human Services, Food and Drug, Center for Devices and Radiological Health Administration, �Dental Composites � Premarket Notification,� 1996, <a href="http://www.fda.gov/cdrh/ode/642.pdf">http://www.fda.gov/cdrh/ode/642.pdf</a>.
  12. N. Moszner, S. Klapdohr, �Nanotechnology for dental composites,� Int. J. Nanotechnology 1, 130-156 (2004).
  13. Biomaterials properties database at the University of Michigan, <a href="www.lib.umich.edu/dentlib/Dental_tables/">www.lib.umich.edu/dentlib/Dental_tables/</a>.
  14. T. J. Trentler, J. E. Boyd, V. L. Colvin, �Epoxy resin-photopolymer composites for volume holography,� Chem. Mater. 12, 1431-1438 (2000).
    [CrossRef]
  15. S. Bartkiewicz, A. Januszko, A. Miniewicz, J. Parka, �Dye-doped liquid crystal composite for real time holography,� Pure. Appl. Opt. 5, 799-809 (1996).
    [CrossRef]
  16. M. D. Rahn, D. P. West, K.Khand, J. D. Shakos, R. M. Shelby, �Digital holographic data storage in a high-performance photorefractive polymer composites,� Appl. Opt. 40, 3395-3401 (2001).
    [CrossRef]
  17. Y. Tomita, H. Nishibiraki, �Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photoplymers doped with pyrromethene dyes,� Appl. Phys. Lett. 83, 410-412 (2003).
    [CrossRef]
  18. N. Suzuki, Y. Tomita, T. Kojima, �Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,� Appl. Phys. Lett. 81, 4121-4123 (2002).
    [CrossRef]
  19. N. Suzuki, Y. Tomita, �Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%,� Appl. Opt. 43, 2125-2129 (2004).
    [CrossRef] [PubMed]
  20. F. G. Robinson, F. A .Rueggeber, P. E .Lockwood, �Thermal stability of direct dental esthetic restorative materials at elevated temperatures,� J. Forensic Sci. 43, 1163-1167 (1998).
    [PubMed]
  21. T. Sano, Y. Uemura, and A. Furuta, �Photosensitive resin composition containing pullulan or esters thereof," U. S. Patent 3,960,685 (1976).
  22. Dejan Panteli?, Svetlana Savi?, Dragica Jakovljevi?, �Dichromated pullulan as a novel photosensitive holographic material,� Opt. Lett. 15, 807-809 (1998).
    [CrossRef]
  23. Svetlana Savi?, Dejan Panteli? and Dragica Jakovljevi?, �Real-time and postprocessing holographic effects in dichromated pullulan,� Appl. Opt. 41, 4484-4488 (2002).
    [CrossRef] [PubMed]
  24. Svetlana Savi?, Dejan Panteli?, Dragica Jakovljevi?, �Dichromated Pullulan: Real-time Effects and Holographic Properties,� presented at the International Conference �Optical Holography and its Applications�, Ukraine, 26-29 Sept. 2000.
  25. Y.W. Zhang, W.G. Zhu, F.T.S Yu, �Rainbow holographic aberrations and the bandwidth requirements,� Appl. Opt. 22, 164-169 (1983).
    [CrossRef] [PubMed]
  26. C-K. Lee, J.W-J. Wu, S-L. Yeh, C-W. Tu, Y-A. Han, E.H-Z. Liao, L.Y-Y. Chang, I-E. Tsai, H-H. Lin, J.C-T. Hsieh, J.T-W. Lee, �Optical configuration and color-representation range of a variable-pitch dot matrix holographic printer,� Appl. Opt. 39, 40-53 (2000).
    [CrossRef]
  27. V. Fano, I. Ortalli, S. Pizzi, M. Bonanini, �Polymerization shrinkage of microfilled composites determined by laser beam scanning,� Biomaterials 18, 467-470 (1997).
    [CrossRef] [PubMed]
  28. L. M. Averina, Yu. S. Milavskii, �Refractometric method of determining the shrinkage of polymers under UV hardening,� J. Opt. Technol. 71 (2), 115-116 (1997).
    [CrossRef]

Appl. Opt. (8)

Appl. Phys. Lett. (2)

Y. Tomita, H. Nishibiraki, �Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photoplymers doped with pyrromethene dyes,� Appl. Phys. Lett. 83, 410-412 (2003).
[CrossRef]

N. Suzuki, Y. Tomita, T. Kojima, �Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,� Appl. Phys. Lett. 81, 4121-4123 (2002).
[CrossRef]

Biomaterials (1)

V. Fano, I. Ortalli, S. Pizzi, M. Bonanini, �Polymerization shrinkage of microfilled composites determined by laser beam scanning,� Biomaterials 18, 467-470 (1997).
[CrossRef] [PubMed]

Chem. Mater. (1)

T. J. Trentler, J. E. Boyd, V. L. Colvin, �Epoxy resin-photopolymer composites for volume holography,� Chem. Mater. 12, 1431-1438 (2000).
[CrossRef]

Int. J. Nanotechnology (1)

N. Moszner, S. Klapdohr, �Nanotechnology for dental composites,� Int. J. Nanotechnology 1, 130-156 (2004).

J. Forensic Sci. (1)

F. G. Robinson, F. A .Rueggeber, P. E .Lockwood, �Thermal stability of direct dental esthetic restorative materials at elevated temperatures,� J. Forensic Sci. 43, 1163-1167 (1998).
[PubMed]

J. Opt. Technol. (1)

Microelectron. Eng. (1)

L. J. Heyderman, H. Schift, C. David, J. Gobrecht, T. Schweiyer, �Flow behavior of thin polymer films used for hot embossing lithography,� Microelectron. Eng. 54, 229-245 (2000).
[CrossRef]

Opt. Lett. (1)

Opt. Spectrosc. (2)

A. D. Galperin, I. V. Kalinina, L. V. Selyavko, V. P. Smaev, �Obtaining relief-phase holograms on PE-2 photographic plates and their copying,� Opt. Spectrosc. (USSR) 60, 644-645 (1986).

S. N. Koreshev and S. V. Gil, �Profile of low frequency relief hologram structures obtained on thin layers of PE- 2 photoemulsion,� Opt. Spectrosc. (USSR) 68, 247-249 (1990).

Optical Holography and its Applications (1)

Svetlana Savi?, Dejan Panteli?, Dragica Jakovljevi?, �Dichromated Pullulan: Real-time Effects and Holographic Properties,� presented at the International Conference �Optical Holography and its Applications�, Ukraine, 26-29 Sept. 2000.

Pure. Appl. Opt. (1)

S. Bartkiewicz, A. Januszko, A. Miniewicz, J. Parka, �Dye-doped liquid crystal composite for real time holography,� Pure. Appl. Opt. 5, 799-809 (1996).
[CrossRef]

Springer Series in Optical Sciences (1)

H. J. Bjelkhagen, Silver Halide Recording Materials for Holography and Their Processing, Springer Series in Optical Sciences 66 (Springer-Verlag, Berlin, 1993).

U. S. Patent (1)

T. Sano, Y. Uemura, and A. Furuta, �Photosensitive resin composition containing pullulan or esters thereof," U. S. Patent 3,960,685 (1976).

U.S. Patent (2)

S. R. LaBelle, B. L. Bohn, �In Line Microembossing, Laminating, Printing and Diecutting,� U.S. Patent 6, 694, 872 (2004).

M. W. Schaefer, T. L. Levandusky, S. Sheu, R. B. Larsen, N. C. Whittle, �Techniques for transferring holograms into metal surfaces,� U.S. Patent 6, 006, 415 (1999).

Other (3)

U. S. Department of Health and Human Services, Food and Drug, Center for Devices and Radiological Health Administration, �Dental Composites � Premarket Notification,� 1996, <a href="http://www.fda.gov/cdrh/ode/642.pdf">http://www.fda.gov/cdrh/ode/642.pdf</a>.

Biomaterials properties database at the University of Michigan, <a href="www.lib.umich.edu/dentlib/Dental_tables/">www.lib.umich.edu/dentlib/Dental_tables/</a>.

Rudolf L. van Renesse, Optical Document Security (Artech House, Boston?London, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) The AFM image of original DCP diffraction grating (top) with period of 1.15 µm and its line profile on a reduced scale (bottom) (b) The AFM image of dental composite (“Helio progress”) diffraction grating copy (top) with period of 1.14 µm and its line profile on a reduced scale (bottom). In both cases the scan size is 20×20 µm.

Fig. 2.
Fig. 2.

(a) FFT of AFM image of original DCP grating (top) with period of 1.15 µm and its line profile (bottom) (see Fig 1(a)). (b) FFT of AFM image of dental composite diffraction grating copy (top) with period of 1.14 µm and its line profile (bottom) (see Fig 1(b)).

Fig. 3.
Fig. 3.

(a) The AFM image of dental composite (“Herculite xrv”) diffraction grating with period of 3.10 µm and (b) its line profile on a reduced scale.

Fig. 4.
Fig. 4.

Average relief depth versus spatial frequency.

Fig. 5.
Fig. 5.

Diffraction efficiency of DCP original and composite copy versus spatial frequency

Metrics