Abstract

A simplified optoelectronic 3R regenerator without electrical signal processing is demonstrated by utilizing the nonlinear electro-optical transfer function of an electroabsorption modulator. 3R regeneration of impaired 10-Gb/s RZ signals is demonstrated, verifying the proposed concept.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, �??Optical Regeneration at 40 Gb/s and Beyond,�?? J. Lightwave Technol. 21, 2779-2790 (2003).
    [CrossRef]
  2. T. Otani, T. Miyazaki, and S. Yamamoto, �??40-Gb/s Optical 3R Regenerator Using Electroabsorption Modulator for Optical Networks,�?? J. Lightwave Technol. 20, 195-200 (2002).
    [CrossRef]
  3. S. Watanabe, �??Technologies of 160 Gbit/s Optical 3R-Regeneration,�?? in Proc. European Conference on Optical Communication 2004, Stockholm, Sweden, September 5-9, 2004, paper Tu4.1.2.
  4. W. Kuebart, B. Lavigne, M. Witte, G. Veith, and O. Leclerc, �??40 Gb/s transmission over 80000 km dispersion shifted fibre using compact opto-electronic-3R regeneration,�?? in Proc. European Conference on Optical Communication 2003, Rimini, Italy, September 21-25, 2003, paper Mo4.3.1.
  5. G. Gavioli and P. Bayvel, �??Amplitude jitter suppression using patterning-tolerant, all-optical 3R regenerator,�?? Electron. Lett. 40, 688-690 (2004).
    [CrossRef]
  6. Y. Kisaka, A. Hirano, M. Yoneyama, and N. Shimizu, �??Simple 2R repeater based on EA modulator directly driven by uni-traveling-carrier photodiode,�?? Electron. Lett. 35, 1016-1017 (1999).
    [CrossRef]
  7. S. Z. Zhang, Y.-J. Chiu, P. Abraham, and J. E. Bowers, �??25-GHz Polarization-Insensitive Electroabsorption Modulators with Traveling-Wave Electrodes,�?? IEEE Photon. Technol. Lett. 11, 191-193 (1999).
    [CrossRef]
  8. M. N. Sysak, J. S. Barton, L. A. Johansson, J. W. Raring, E. J. Skogen, M. L. Masanovic, D. J. Blumenthal, and L. A. Coldren, �??Single-Chip Wavelength Conversion Using a Photocurrent-Driven EAM Integrated With a Widely Tunable Sampled-Grating DBR Laser,�?? IEEE Photon. Technol. Lett. 16, 2093-2095 (2004).
    [CrossRef]

Electron. Lett. (2)

G. Gavioli and P. Bayvel, �??Amplitude jitter suppression using patterning-tolerant, all-optical 3R regenerator,�?? Electron. Lett. 40, 688-690 (2004).
[CrossRef]

Y. Kisaka, A. Hirano, M. Yoneyama, and N. Shimizu, �??Simple 2R repeater based on EA modulator directly driven by uni-traveling-carrier photodiode,�?? Electron. Lett. 35, 1016-1017 (1999).
[CrossRef]

European Conference on Optical Comm. (2)

S. Watanabe, �??Technologies of 160 Gbit/s Optical 3R-Regeneration,�?? in Proc. European Conference on Optical Communication 2004, Stockholm, Sweden, September 5-9, 2004, paper Tu4.1.2.

W. Kuebart, B. Lavigne, M. Witte, G. Veith, and O. Leclerc, �??40 Gb/s transmission over 80000 km dispersion shifted fibre using compact opto-electronic-3R regeneration,�?? in Proc. European Conference on Optical Communication 2003, Rimini, Italy, September 21-25, 2003, paper Mo4.3.1.

IEEE Photon. Technol. Lett. (2)

S. Z. Zhang, Y.-J. Chiu, P. Abraham, and J. E. Bowers, �??25-GHz Polarization-Insensitive Electroabsorption Modulators with Traveling-Wave Electrodes,�?? IEEE Photon. Technol. Lett. 11, 191-193 (1999).
[CrossRef]

M. N. Sysak, J. S. Barton, L. A. Johansson, J. W. Raring, E. J. Skogen, M. L. Masanovic, D. J. Blumenthal, and L. A. Coldren, �??Single-Chip Wavelength Conversion Using a Photocurrent-Driven EAM Integrated With a Widely Tunable Sampled-Grating DBR Laser,�?? IEEE Photon. Technol. Lett. 16, 2093-2095 (2004).
[CrossRef]

J. Lightwave Technol. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Conventional optoelectronic 3R regenerator; (b) simplified optoelectronic 3R regenerator; (c) E/O transfer functions in linear scale

Fig. 2.
Fig. 2.

(a) Experimental setup; (b) the electrical driving signal and the corresponding gating windows at different bias voltages

Fig. 3.
Fig. 3.

Results with a high-quality input signal (a) eye diagrams; (b) BER; (c) timing tolerance

Fig. 4.
Fig. 4.

Results with a 20-dB OSNR input signal (a) eye diagrams; (b) BER

Fig. 5.
Fig. 5.

Results with a 16-dB OSNR input signal (a) eye diagrams; (b) BER

Fig. 6.
Fig. 6.

Results with a dispersed input signal (a) eye diagrams; (b) BER

Metrics