Abstract

Multimode laser operation is usually characterized by high output power, yet its beam quality is inferior to that of a laser with single TEM 00 mode operation. Here we present an efficient approach for improving the beam quality of multimode laser resonators. The approach is based on splitting the intra-cavity multimode beam into an array of smaller beams, each with a high quality beam distribution, which are coherently added within the resonator. The coupling between the beams in the array and their coherent addition is achieved with planar interferometric beam combiners. Experimental verification, where the intra-cavity multimode beam in a pulsed Nd:YAG laser resonator is split into four Gaussian beams that are then coherently added, provides a total increase in brightness of one order of magnitude. Additional spectral measurements indicate that scaling to larger coherent arrays is possible.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Intracavity coherent addition of 16 laser distributions

V. Eckhouse, A. A. Ishaaya, L. Shimshi, N. Davidson, and A. A. Friesem
Opt. Lett. 31(3) 350-352 (2006)

Coherent addition of spatially incoherent light beams

Amiel A. Ishaaya, Liran Shimshi, Nir Davidson, and Asher A. Friesem
Opt. Express 12(20) 4929-4934 (2004)

Intracavity coherent addition of single high-order modes

A. A. Ishaaya, V. Eckhouse, L. Shimshi, N. Davidson, and A. A. Friesem
Opt. Lett. 30(14) 1770-1772 (2005)

References

  • View by:
  • |
  • |
  • |

  1. M. J. DiDomenico, “A single-frequency TEM00-mode gas laser with high output power,” Appl. Phys. Lett. 8, 20–22 (1966).
    [Crossref]
  2. D. Sabourdy, V. Kermene, A. Desfarges-Berthelemot, M. Vampouille, and A. Barthelemy, “Coherent combining of two Nd:YAG lasers in a Vernier-Michelson-type cavity,” Appl. Phys. B 75, 503–507 (2002).
    [Crossref]
  3. J. R. Leger, G. J. Swanson, and W. B. Veldkamp, “Coherent laser addition using binary phase gratings,” Appl. Opt. 26, 4391–4399 (1987).
    [Crossref] [PubMed]
  4. J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771–1773 (1988).
    [Crossref]
  5. M. Tondusson, C. Froehly, V. Kermene, and M. Vampouille, “Coherent combination of four laser beams in a multi-axis Fourier cavity using a diffractive optical element,” J. Opt. A: Pure Appl. Opt. 3, 521–526 (2001).
    [Crossref]
  6. D. Sabourdy et. al., “Efficient coherent combining of widely tunable fiber lasers,” Opt. Express 11, 87–97 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-2-87.
    [Crossref] [PubMed]
  7. A. Shirakawa, K. Matsuo, and K. Ueda, “Power summation and bandwidth narrowing in coherently coupled fiber laser array,” CThGG2, Conference on Lasers and Electro-Optics (CLEO), San Francisco, California, USA (2004).
  8. A. A. Ishaaya, N. Davidson, L. Shimshi, and A. A. Friesem, “Intra-cavity coherent addition of Gaussian beam distributions using a planar interferometric coupler,” Appl. Phys. Lett. 85, 2187–2189 (2004).
    [Crossref]
  9. A. A. Ishaaya, L. Shimshi, N. Davidson, and A. A. Friesem, “Coherent addition of spatially incoherent light beams,” Opt. Express 12, 4929–4934 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4929.
    [Crossref] [PubMed]
  10. A. E. Siegman, “New developments in laser resonators,” Optical Resonators: Proc. SPIE 1224, 2–14 (1990).
    [Crossref]
  11. W. Koechner, Solid-state laser engineering (Springer-Verlag, 5th ed., Germany, 1999, p. 209).
  12. J. Xu, S. Li, K. K. Lee, and Y. C. Chen, “Phase locking in a two-element laser array: a test of the coupled-oscillator model,” Opt. Lett. 18, 513–515 (1993).
    [Crossref] [PubMed]
  13. L. Fabiny, P. Colet, R. Roy, and D. Lenstra, “Coherence and phase dynamics of spatially coupled solid-state lasers,” Phys. Rev. A 47, 4287–4296 (1993).
    [Crossref] [PubMed]
  14. N. Hodgson and H. Weber, Optical resonators, fundamentals, advanced concepts and applications (Springer-Verlag London, Great Britain, 1997, p. 319).

2004 (2)

A. A. Ishaaya, N. Davidson, L. Shimshi, and A. A. Friesem, “Intra-cavity coherent addition of Gaussian beam distributions using a planar interferometric coupler,” Appl. Phys. Lett. 85, 2187–2189 (2004).
[Crossref]

A. A. Ishaaya, L. Shimshi, N. Davidson, and A. A. Friesem, “Coherent addition of spatially incoherent light beams,” Opt. Express 12, 4929–4934 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4929.
[Crossref] [PubMed]

2003 (1)

2002 (1)

D. Sabourdy, V. Kermene, A. Desfarges-Berthelemot, M. Vampouille, and A. Barthelemy, “Coherent combining of two Nd:YAG lasers in a Vernier-Michelson-type cavity,” Appl. Phys. B 75, 503–507 (2002).
[Crossref]

2001 (1)

M. Tondusson, C. Froehly, V. Kermene, and M. Vampouille, “Coherent combination of four laser beams in a multi-axis Fourier cavity using a diffractive optical element,” J. Opt. A: Pure Appl. Opt. 3, 521–526 (2001).
[Crossref]

1993 (2)

J. Xu, S. Li, K. K. Lee, and Y. C. Chen, “Phase locking in a two-element laser array: a test of the coupled-oscillator model,” Opt. Lett. 18, 513–515 (1993).
[Crossref] [PubMed]

L. Fabiny, P. Colet, R. Roy, and D. Lenstra, “Coherence and phase dynamics of spatially coupled solid-state lasers,” Phys. Rev. A 47, 4287–4296 (1993).
[Crossref] [PubMed]

1990 (1)

A. E. Siegman, “New developments in laser resonators,” Optical Resonators: Proc. SPIE 1224, 2–14 (1990).
[Crossref]

1988 (1)

J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771–1773 (1988).
[Crossref]

1987 (1)

1966 (1)

M. J. DiDomenico, “A single-frequency TEM00-mode gas laser with high output power,” Appl. Phys. Lett. 8, 20–22 (1966).
[Crossref]

Barthelemy, A.

D. Sabourdy, V. Kermene, A. Desfarges-Berthelemot, M. Vampouille, and A. Barthelemy, “Coherent combining of two Nd:YAG lasers in a Vernier-Michelson-type cavity,” Appl. Phys. B 75, 503–507 (2002).
[Crossref]

Chen, Y. C.

Colet, P.

L. Fabiny, P. Colet, R. Roy, and D. Lenstra, “Coherence and phase dynamics of spatially coupled solid-state lasers,” Phys. Rev. A 47, 4287–4296 (1993).
[Crossref] [PubMed]

Davidson, N.

A. A. Ishaaya, N. Davidson, L. Shimshi, and A. A. Friesem, “Intra-cavity coherent addition of Gaussian beam distributions using a planar interferometric coupler,” Appl. Phys. Lett. 85, 2187–2189 (2004).
[Crossref]

A. A. Ishaaya, L. Shimshi, N. Davidson, and A. A. Friesem, “Coherent addition of spatially incoherent light beams,” Opt. Express 12, 4929–4934 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4929.
[Crossref] [PubMed]

Desfarges-Berthelemot, A.

D. Sabourdy, V. Kermene, A. Desfarges-Berthelemot, M. Vampouille, and A. Barthelemy, “Coherent combining of two Nd:YAG lasers in a Vernier-Michelson-type cavity,” Appl. Phys. B 75, 503–507 (2002).
[Crossref]

DiDomenico, M. J.

M. J. DiDomenico, “A single-frequency TEM00-mode gas laser with high output power,” Appl. Phys. Lett. 8, 20–22 (1966).
[Crossref]

Fabiny, L.

L. Fabiny, P. Colet, R. Roy, and D. Lenstra, “Coherence and phase dynamics of spatially coupled solid-state lasers,” Phys. Rev. A 47, 4287–4296 (1993).
[Crossref] [PubMed]

Friesem, A. A.

A. A. Ishaaya, N. Davidson, L. Shimshi, and A. A. Friesem, “Intra-cavity coherent addition of Gaussian beam distributions using a planar interferometric coupler,” Appl. Phys. Lett. 85, 2187–2189 (2004).
[Crossref]

A. A. Ishaaya, L. Shimshi, N. Davidson, and A. A. Friesem, “Coherent addition of spatially incoherent light beams,” Opt. Express 12, 4929–4934 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4929.
[Crossref] [PubMed]

Froehly, C.

M. Tondusson, C. Froehly, V. Kermene, and M. Vampouille, “Coherent combination of four laser beams in a multi-axis Fourier cavity using a diffractive optical element,” J. Opt. A: Pure Appl. Opt. 3, 521–526 (2001).
[Crossref]

Hodgson, N.

N. Hodgson and H. Weber, Optical resonators, fundamentals, advanced concepts and applications (Springer-Verlag London, Great Britain, 1997, p. 319).

Ishaaya, A. A.

A. A. Ishaaya, N. Davidson, L. Shimshi, and A. A. Friesem, “Intra-cavity coherent addition of Gaussian beam distributions using a planar interferometric coupler,” Appl. Phys. Lett. 85, 2187–2189 (2004).
[Crossref]

A. A. Ishaaya, L. Shimshi, N. Davidson, and A. A. Friesem, “Coherent addition of spatially incoherent light beams,” Opt. Express 12, 4929–4934 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4929.
[Crossref] [PubMed]

Kermene, V.

D. Sabourdy, V. Kermene, A. Desfarges-Berthelemot, M. Vampouille, and A. Barthelemy, “Coherent combining of two Nd:YAG lasers in a Vernier-Michelson-type cavity,” Appl. Phys. B 75, 503–507 (2002).
[Crossref]

M. Tondusson, C. Froehly, V. Kermene, and M. Vampouille, “Coherent combination of four laser beams in a multi-axis Fourier cavity using a diffractive optical element,” J. Opt. A: Pure Appl. Opt. 3, 521–526 (2001).
[Crossref]

Koechner, W.

W. Koechner, Solid-state laser engineering (Springer-Verlag, 5th ed., Germany, 1999, p. 209).

Lee, K. K.

Leger, J. R.

J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771–1773 (1988).
[Crossref]

J. R. Leger, G. J. Swanson, and W. B. Veldkamp, “Coherent laser addition using binary phase gratings,” Appl. Opt. 26, 4391–4399 (1987).
[Crossref] [PubMed]

Lenstra, D.

L. Fabiny, P. Colet, R. Roy, and D. Lenstra, “Coherence and phase dynamics of spatially coupled solid-state lasers,” Phys. Rev. A 47, 4287–4296 (1993).
[Crossref] [PubMed]

Li, S.

Matsuo, K.

A. Shirakawa, K. Matsuo, and K. Ueda, “Power summation and bandwidth narrowing in coherently coupled fiber laser array,” CThGG2, Conference on Lasers and Electro-Optics (CLEO), San Francisco, California, USA (2004).

Roy, R.

L. Fabiny, P. Colet, R. Roy, and D. Lenstra, “Coherence and phase dynamics of spatially coupled solid-state lasers,” Phys. Rev. A 47, 4287–4296 (1993).
[Crossref] [PubMed]

Sabourdy, D.

D. Sabourdy et. al., “Efficient coherent combining of widely tunable fiber lasers,” Opt. Express 11, 87–97 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-2-87.
[Crossref] [PubMed]

D. Sabourdy, V. Kermene, A. Desfarges-Berthelemot, M. Vampouille, and A. Barthelemy, “Coherent combining of two Nd:YAG lasers in a Vernier-Michelson-type cavity,” Appl. Phys. B 75, 503–507 (2002).
[Crossref]

Scott, M. L.

J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771–1773 (1988).
[Crossref]

Shimshi, L.

A. A. Ishaaya, N. Davidson, L. Shimshi, and A. A. Friesem, “Intra-cavity coherent addition of Gaussian beam distributions using a planar interferometric coupler,” Appl. Phys. Lett. 85, 2187–2189 (2004).
[Crossref]

A. A. Ishaaya, L. Shimshi, N. Davidson, and A. A. Friesem, “Coherent addition of spatially incoherent light beams,” Opt. Express 12, 4929–4934 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4929.
[Crossref] [PubMed]

Shirakawa, A.

A. Shirakawa, K. Matsuo, and K. Ueda, “Power summation and bandwidth narrowing in coherently coupled fiber laser array,” CThGG2, Conference on Lasers and Electro-Optics (CLEO), San Francisco, California, USA (2004).

Siegman, A. E.

A. E. Siegman, “New developments in laser resonators,” Optical Resonators: Proc. SPIE 1224, 2–14 (1990).
[Crossref]

Swanson, G. J.

Tondusson, M.

M. Tondusson, C. Froehly, V. Kermene, and M. Vampouille, “Coherent combination of four laser beams in a multi-axis Fourier cavity using a diffractive optical element,” J. Opt. A: Pure Appl. Opt. 3, 521–526 (2001).
[Crossref]

Ueda, K.

A. Shirakawa, K. Matsuo, and K. Ueda, “Power summation and bandwidth narrowing in coherently coupled fiber laser array,” CThGG2, Conference on Lasers and Electro-Optics (CLEO), San Francisco, California, USA (2004).

Vampouille, M.

D. Sabourdy, V. Kermene, A. Desfarges-Berthelemot, M. Vampouille, and A. Barthelemy, “Coherent combining of two Nd:YAG lasers in a Vernier-Michelson-type cavity,” Appl. Phys. B 75, 503–507 (2002).
[Crossref]

M. Tondusson, C. Froehly, V. Kermene, and M. Vampouille, “Coherent combination of four laser beams in a multi-axis Fourier cavity using a diffractive optical element,” J. Opt. A: Pure Appl. Opt. 3, 521–526 (2001).
[Crossref]

Veldkamp, W. B.

J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771–1773 (1988).
[Crossref]

J. R. Leger, G. J. Swanson, and W. B. Veldkamp, “Coherent laser addition using binary phase gratings,” Appl. Opt. 26, 4391–4399 (1987).
[Crossref] [PubMed]

Weber, H.

N. Hodgson and H. Weber, Optical resonators, fundamentals, advanced concepts and applications (Springer-Verlag London, Great Britain, 1997, p. 319).

Xu, J.

Appl. Opt. (1)

Appl. Phys. B (1)

D. Sabourdy, V. Kermene, A. Desfarges-Berthelemot, M. Vampouille, and A. Barthelemy, “Coherent combining of two Nd:YAG lasers in a Vernier-Michelson-type cavity,” Appl. Phys. B 75, 503–507 (2002).
[Crossref]

Appl. Phys. Lett. (3)

M. J. DiDomenico, “A single-frequency TEM00-mode gas laser with high output power,” Appl. Phys. Lett. 8, 20–22 (1966).
[Crossref]

J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771–1773 (1988).
[Crossref]

A. A. Ishaaya, N. Davidson, L. Shimshi, and A. A. Friesem, “Intra-cavity coherent addition of Gaussian beam distributions using a planar interferometric coupler,” Appl. Phys. Lett. 85, 2187–2189 (2004).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

M. Tondusson, C. Froehly, V. Kermene, and M. Vampouille, “Coherent combination of four laser beams in a multi-axis Fourier cavity using a diffractive optical element,” J. Opt. A: Pure Appl. Opt. 3, 521–526 (2001).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optical Resonators: Proc. SPIE (1)

A. E. Siegman, “New developments in laser resonators,” Optical Resonators: Proc. SPIE 1224, 2–14 (1990).
[Crossref]

Phys. Rev. A (1)

L. Fabiny, P. Colet, R. Roy, and D. Lenstra, “Coherence and phase dynamics of spatially coupled solid-state lasers,” Phys. Rev. A 47, 4287–4296 (1993).
[Crossref] [PubMed]

Other (3)

N. Hodgson and H. Weber, Optical resonators, fundamentals, advanced concepts and applications (Springer-Verlag London, Great Britain, 1997, p. 319).

W. Koechner, Solid-state laser engineering (Springer-Verlag, 5th ed., Germany, 1999, p. 209).

A. Shirakawa, K. Matsuo, and K. Ueda, “Power summation and bandwidth narrowing in coherently coupled fiber laser array,” CThGG2, Conference on Lasers and Electro-Optics (CLEO), San Francisco, California, USA (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Laser resonator configurations. (a) a basic multimode laser resonator; (b) a laser resonator with four incoherent laser beam distributions; (c) a laser resonator with two interferometric combiners resulting in phase locking and coherent addition of the four beam distributions.

Fig. 2.
Fig. 2.

Intra-cavity aperture array for generating multiple channels within the resonator. (a) A 2×2 spaced aperture array; (b) a single square aperture for generating a tightly packed 2×2 array.

Fig. 3.
Fig. 3.

Experimental resonator configuration. A 2×2 coherent phased array of Gaussian distributions is generated within the gain medium using four apertures and two interferometric beam combiners. Coherently adding the beams in the array produces a single output beam with high brightness.

Fig. 4.
Fig. 4.

Measured output pulse energy as a function of the pump power for a single Gaussian channel laser operation (oe-13-7-2722-i001), and for intra-cavity coherent addition of four Gaussian channels (oe-13-7-2722-i002).

Fig. 5.
Fig. 5.

Experimental near and far field intensity distributions of the single and four channels output beam. (a) a single Gaussian channel without an intra-cavity interferometric beam combiner; (b) four Gaussian channels that are coherently added with two intra-cavity interferometric combiners.

Fig. 6.
Fig. 6.

Experimental near and far field intensity distributions of the multimode output beam and the Gaussian output beam after tight packing. (a) square multimode beam output distributions without an intra-cavity interferometric beam combiner; (b) Gaussian beam output distribution after coherently adding a tightly packed 2×2 array of Gaussian distributions with two intra-cavity interferometric combiners.

Fig. 7.
Fig. 7.

Experimental power spectrum measurements. (a) The power spectrum of the output beam with a single Gaussian channel resonator configuration (without beam combiners); (b) the power spectrum of the coherently combined output beam with a four-channel resonator configuration.

Metrics