Abstract

We use optical darkfield micro-spectroscopy to characterize the plasmon resonance of individual silver nanoparticles in the presence of a substrate. The optical system permits multiple individual nanoparticles to be identified visually for simultaneous spectroscopic study. For silver particles bound to a silanated glass substrate, we observe changes in the plasmon resonance due to induced variations in the local refractive index. The shifts in the plasmon resonance are investigated using a simple analytical theory in which the contributions from the substrate and environment are weighted with distance from the nanoparticle. The theory is compared with experimental results to determine a weighting factor which facilitates modeling of environmental refractive index changes using standard Mie code. Use of the optical system for characterizing nanoparticles attached to substrates for biosensing applications is discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real-time on a surface,” Anal. Chem. 74, 504–509 (2002).
    [Crossref] [PubMed]
  2. S. Link and M. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Ann. Rev. Phys. Chem. 54, 331–366 (2003).
    [Crossref]
  3. A. Haes, D. Stuart, S. Nie, and R. Van Duyne, “Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms,” Journ. Fluor. 14, 355–367 (2004).
    [Crossref]
  4. G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Letters 3, 935–938 (2003).
    [Crossref]
  5. http://www.philiplaven.com
  6. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  7. H. Xu and M. Käll, “Modeling the optical response of nanoparticle-based surface plasmon resonance sensors,” Sensors and Actuators B 87, 244–249 (2002).
    [Crossref]
  8. P. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate” Physica 137A, 209–242 (1986).
  9. J. Kim, S. Ehrman, G. Mulholland, and T. Germer, “Polarized light scattering by dielectric and metallic spheres on silicon wafers,” Applied Optics 41, 5405–5412 (2002).
    [Crossref] [PubMed]
  10. C. Oubre and P. Nordlander, “Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method,” J. Phys. Chem. B 108, 17740–17747 (2004).
    [Crossref]
  11. T. Jensen, M. Duval, K. Kelly, A. Lazarides, G. Schatz, and R. Van Duyne, “Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
    [Crossref]
  12. K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [Crossref]
  13. H. Tamaru, H. Kuwata, H. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Letters 80, 1826–1828 (2002).
    [Crossref]
  14. C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussennegg, V. Chan, J. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Letters 77, 2949–2951 (2000).
    [Crossref]
  15. A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73, 361–372 (2001).
    [Crossref]
  16. T. Okamoto, “Near-field spectral analysis of metallic beads,” Topics Appl. Phys. 81, 97–123 (2001).
    [Crossref]
  17. K. Su, Q. Wei, X. Zhang, J. Mock, D. Smith, and S. Schultz. “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Letters 3, 1087–1090 (2003).
    [Crossref]
  18. D. Evanoff, R. White, and G. Chumanov, “Measuring the distance dependence of the local electromagnetic field from silver nanoparticles,” J. Phys. Chem. B 108, 1522–1524 (2004).
    [Crossref]
  19. M. Miller and A. Lazarides, “Controlling the sensing volume of metal nanosphere molecular sensors,” in Nanoengineered Assemblies and Advanced Micro/Nanosystems, edited by David P. Taylor, Jun Liu, David McIlroy, Lhadi Merhari, J.B. Pendry, Jeffrey T. Borenstein, Piotr Grodzinski, Luke P. Lee, and Zhong Lin Wang (Mater. Res. Soc. Symp. Proc. 820, Warrendale, PA,2004), pp 407–413.
  20. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonance in large noble-metal clusters,” New J. Phys. 4, 93.1–93.8 (2002).
    [Crossref]

2004 (3)

A. Haes, D. Stuart, S. Nie, and R. Van Duyne, “Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms,” Journ. Fluor. 14, 355–367 (2004).
[Crossref]

C. Oubre and P. Nordlander, “Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method,” J. Phys. Chem. B 108, 17740–17747 (2004).
[Crossref]

D. Evanoff, R. White, and G. Chumanov, “Measuring the distance dependence of the local electromagnetic field from silver nanoparticles,” J. Phys. Chem. B 108, 1522–1524 (2004).
[Crossref]

2003 (4)

K. Su, Q. Wei, X. Zhang, J. Mock, D. Smith, and S. Schultz. “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Letters 3, 1087–1090 (2003).
[Crossref]

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Letters 3, 935–938 (2003).
[Crossref]

S. Link and M. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Ann. Rev. Phys. Chem. 54, 331–366 (2003).
[Crossref]

2002 (5)

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real-time on a surface,” Anal. Chem. 74, 504–509 (2002).
[Crossref] [PubMed]

H. Xu and M. Käll, “Modeling the optical response of nanoparticle-based surface plasmon resonance sensors,” Sensors and Actuators B 87, 244–249 (2002).
[Crossref]

H. Tamaru, H. Kuwata, H. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Letters 80, 1826–1828 (2002).
[Crossref]

J. Kim, S. Ehrman, G. Mulholland, and T. Germer, “Polarized light scattering by dielectric and metallic spheres on silicon wafers,” Applied Optics 41, 5405–5412 (2002).
[Crossref] [PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonance in large noble-metal clusters,” New J. Phys. 4, 93.1–93.8 (2002).
[Crossref]

2001 (2)

A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73, 361–372 (2001).
[Crossref]

T. Okamoto, “Near-field spectral analysis of metallic beads,” Topics Appl. Phys. 81, 97–123 (2001).
[Crossref]

2000 (1)

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussennegg, V. Chan, J. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Letters 77, 2949–2951 (2000).
[Crossref]

1999 (1)

T. Jensen, M. Duval, K. Kelly, A. Lazarides, G. Schatz, and R. Van Duyne, “Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
[Crossref]

1986 (1)

P. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate” Physica 137A, 209–242 (1986).

1972 (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Aussennegg, F.

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussennegg, V. Chan, J. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Letters 77, 2949–2951 (2000).
[Crossref]

Bobbert, P.

P. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate” Physica 137A, 209–242 (1986).

Chan, V.

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussennegg, V. Chan, J. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Letters 77, 2949–2951 (2000).
[Crossref]

Chilkoti, A.

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real-time on a surface,” Anal. Chem. 74, 504–509 (2002).
[Crossref] [PubMed]

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Chumanov, G.

D. Evanoff, R. White, and G. Chumanov, “Measuring the distance dependence of the local electromagnetic field from silver nanoparticles,” J. Phys. Chem. B 108, 1522–1524 (2004).
[Crossref]

Coronado, E.

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Ditlbacher, H.

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussennegg, V. Chan, J. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Letters 77, 2949–2951 (2000).
[Crossref]

Duval, M.

T. Jensen, M. Duval, K. Kelly, A. Lazarides, G. Schatz, and R. Van Duyne, “Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
[Crossref]

Ehrman, S.

J. Kim, S. Ehrman, G. Mulholland, and T. Germer, “Polarized light scattering by dielectric and metallic spheres on silicon wafers,” Applied Optics 41, 5405–5412 (2002).
[Crossref] [PubMed]

El-Sayed, M.

S. Link and M. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Ann. Rev. Phys. Chem. 54, 331–366 (2003).
[Crossref]

Evanoff, D.

D. Evanoff, R. White, and G. Chumanov, “Measuring the distance dependence of the local electromagnetic field from silver nanoparticles,” J. Phys. Chem. B 108, 1522–1524 (2004).
[Crossref]

Feldmann, J.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Letters 3, 935–938 (2003).
[Crossref]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonance in large noble-metal clusters,” New J. Phys. 4, 93.1–93.8 (2002).
[Crossref]

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussennegg, V. Chan, J. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Letters 77, 2949–2951 (2000).
[Crossref]

Franzl, T.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Letters 3, 935–938 (2003).
[Crossref]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonance in large noble-metal clusters,” New J. Phys. 4, 93.1–93.8 (2002).
[Crossref]

Geier, S.

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussennegg, V. Chan, J. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Letters 77, 2949–2951 (2000).
[Crossref]

Germer, T.

J. Kim, S. Ehrman, G. Mulholland, and T. Germer, “Polarized light scattering by dielectric and metallic spheres on silicon wafers,” Applied Optics 41, 5405–5412 (2002).
[Crossref] [PubMed]

Haes, A.

A. Haes, D. Stuart, S. Nie, and R. Van Duyne, “Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms,” Journ. Fluor. 14, 355–367 (2004).
[Crossref]

Hecker, N.

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussennegg, V. Chan, J. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Letters 77, 2949–2951 (2000).
[Crossref]

Hilger, A.

A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73, 361–372 (2001).
[Crossref]

Jensen, T.

T. Jensen, M. Duval, K. Kelly, A. Lazarides, G. Schatz, and R. Van Duyne, “Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
[Crossref]

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Käll, M.

H. Xu and M. Käll, “Modeling the optical response of nanoparticle-based surface plasmon resonance sensors,” Sensors and Actuators B 87, 244–249 (2002).
[Crossref]

Kelly, K.

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

T. Jensen, M. Duval, K. Kelly, A. Lazarides, G. Schatz, and R. Van Duyne, “Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
[Crossref]

Kim, J.

J. Kim, S. Ehrman, G. Mulholland, and T. Germer, “Polarized light scattering by dielectric and metallic spheres on silicon wafers,” Applied Optics 41, 5405–5412 (2002).
[Crossref] [PubMed]

Klar, T.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Letters 3, 935–938 (2003).
[Crossref]

Kowarik, S.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Letters 3, 935–938 (2003).
[Crossref]

Kreibig, U.

A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73, 361–372 (2001).
[Crossref]

Krenn, J.

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussennegg, V. Chan, J. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Letters 77, 2949–2951 (2000).
[Crossref]

Kurzinger, K.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Letters 3, 935–938 (2003).
[Crossref]

Kuwata, H.

H. Tamaru, H. Kuwata, H. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Letters 80, 1826–1828 (2002).
[Crossref]

Lamprecht, B.

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussennegg, V. Chan, J. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Letters 77, 2949–2951 (2000).
[Crossref]

Lazarides, A.

T. Jensen, M. Duval, K. Kelly, A. Lazarides, G. Schatz, and R. Van Duyne, “Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
[Crossref]

M. Miller and A. Lazarides, “Controlling the sensing volume of metal nanosphere molecular sensors,” in Nanoengineered Assemblies and Advanced Micro/Nanosystems, edited by David P. Taylor, Jun Liu, David McIlroy, Lhadi Merhari, J.B. Pendry, Jeffrey T. Borenstein, Piotr Grodzinski, Luke P. Lee, and Zhong Lin Wang (Mater. Res. Soc. Symp. Proc. 820, Warrendale, PA,2004), pp 407–413.

Link, S.

S. Link and M. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Ann. Rev. Phys. Chem. 54, 331–366 (2003).
[Crossref]

Miller, M.

M. Miller and A. Lazarides, “Controlling the sensing volume of metal nanosphere molecular sensors,” in Nanoengineered Assemblies and Advanced Micro/Nanosystems, edited by David P. Taylor, Jun Liu, David McIlroy, Lhadi Merhari, J.B. Pendry, Jeffrey T. Borenstein, Piotr Grodzinski, Luke P. Lee, and Zhong Lin Wang (Mater. Res. Soc. Symp. Proc. 820, Warrendale, PA,2004), pp 407–413.

Miyano, K.

H. Tamaru, H. Kuwata, H. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Letters 80, 1826–1828 (2002).
[Crossref]

Miyazaki, H.

H. Tamaru, H. Kuwata, H. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Letters 80, 1826–1828 (2002).
[Crossref]

Mock, J.

K. Su, Q. Wei, X. Zhang, J. Mock, D. Smith, and S. Schultz. “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Letters 3, 1087–1090 (2003).
[Crossref]

Moller, M.

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussennegg, V. Chan, J. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Letters 77, 2949–2951 (2000).
[Crossref]

Mulholland, G.

J. Kim, S. Ehrman, G. Mulholland, and T. Germer, “Polarized light scattering by dielectric and metallic spheres on silicon wafers,” Applied Optics 41, 5405–5412 (2002).
[Crossref] [PubMed]

Nath, N.

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real-time on a surface,” Anal. Chem. 74, 504–509 (2002).
[Crossref] [PubMed]

Nichtl, A.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Letters 3, 935–938 (2003).
[Crossref]

Nie, S.

A. Haes, D. Stuart, S. Nie, and R. Van Duyne, “Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms,” Journ. Fluor. 14, 355–367 (2004).
[Crossref]

Nordlander, P.

C. Oubre and P. Nordlander, “Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method,” J. Phys. Chem. B 108, 17740–17747 (2004).
[Crossref]

Okamoto, T.

T. Okamoto, “Near-field spectral analysis of metallic beads,” Topics Appl. Phys. 81, 97–123 (2001).
[Crossref]

Oubre, C.

C. Oubre and P. Nordlander, “Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method,” J. Phys. Chem. B 108, 17740–17747 (2004).
[Crossref]

Raschke, G.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Letters 3, 935–938 (2003).
[Crossref]

Schatz, G.

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

T. Jensen, M. Duval, K. Kelly, A. Lazarides, G. Schatz, and R. Van Duyne, “Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
[Crossref]

Schultz, S.

K. Su, Q. Wei, X. Zhang, J. Mock, D. Smith, and S. Schultz. “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Letters 3, 1087–1090 (2003).
[Crossref]

Smith, D.

K. Su, Q. Wei, X. Zhang, J. Mock, D. Smith, and S. Schultz. “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Letters 3, 1087–1090 (2003).
[Crossref]

Sonnichsen, C.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Letters 3, 935–938 (2003).
[Crossref]

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonance in large noble-metal clusters,” New J. Phys. 4, 93.1–93.8 (2002).
[Crossref]

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussennegg, V. Chan, J. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Letters 77, 2949–2951 (2000).
[Crossref]

Spatz, J.

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussennegg, V. Chan, J. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Letters 77, 2949–2951 (2000).
[Crossref]

Stuart, D.

A. Haes, D. Stuart, S. Nie, and R. Van Duyne, “Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms,” Journ. Fluor. 14, 355–367 (2004).
[Crossref]

Su, K.

K. Su, Q. Wei, X. Zhang, J. Mock, D. Smith, and S. Schultz. “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Letters 3, 1087–1090 (2003).
[Crossref]

Tamaru, H.

H. Tamaru, H. Kuwata, H. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Letters 80, 1826–1828 (2002).
[Crossref]

Tenfelde, M.

A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73, 361–372 (2001).
[Crossref]

Van Duyne, R.

A. Haes, D. Stuart, S. Nie, and R. Van Duyne, “Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms,” Journ. Fluor. 14, 355–367 (2004).
[Crossref]

T. Jensen, M. Duval, K. Kelly, A. Lazarides, G. Schatz, and R. Van Duyne, “Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
[Crossref]

Vlieger, J.

P. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate” Physica 137A, 209–242 (1986).

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonance in large noble-metal clusters,” New J. Phys. 4, 93.1–93.8 (2002).
[Crossref]

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussennegg, V. Chan, J. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Letters 77, 2949–2951 (2000).
[Crossref]

Wei, Q.

K. Su, Q. Wei, X. Zhang, J. Mock, D. Smith, and S. Schultz. “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Letters 3, 1087–1090 (2003).
[Crossref]

White, R.

D. Evanoff, R. White, and G. Chumanov, “Measuring the distance dependence of the local electromagnetic field from silver nanoparticles,” J. Phys. Chem. B 108, 1522–1524 (2004).
[Crossref]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonance in large noble-metal clusters,” New J. Phys. 4, 93.1–93.8 (2002).
[Crossref]

Xu, H.

H. Xu and M. Käll, “Modeling the optical response of nanoparticle-based surface plasmon resonance sensors,” Sensors and Actuators B 87, 244–249 (2002).
[Crossref]

Zhang, X.

K. Su, Q. Wei, X. Zhang, J. Mock, D. Smith, and S. Schultz. “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Letters 3, 1087–1090 (2003).
[Crossref]

Zhao, L.

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Anal. Chem. (1)

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real-time on a surface,” Anal. Chem. 74, 504–509 (2002).
[Crossref] [PubMed]

Ann. Rev. Phys. Chem. (1)

S. Link and M. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Ann. Rev. Phys. Chem. 54, 331–366 (2003).
[Crossref]

Appl. Phys. B (1)

A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73, 361–372 (2001).
[Crossref]

Appl. Phys. Letters (2)

H. Tamaru, H. Kuwata, H. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Letters 80, 1826–1828 (2002).
[Crossref]

C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussennegg, V. Chan, J. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Letters 77, 2949–2951 (2000).
[Crossref]

Applied Optics (1)

J. Kim, S. Ehrman, G. Mulholland, and T. Germer, “Polarized light scattering by dielectric and metallic spheres on silicon wafers,” Applied Optics 41, 5405–5412 (2002).
[Crossref] [PubMed]

J. Phys. Chem. B (4)

C. Oubre and P. Nordlander, “Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method,” J. Phys. Chem. B 108, 17740–17747 (2004).
[Crossref]

T. Jensen, M. Duval, K. Kelly, A. Lazarides, G. Schatz, and R. Van Duyne, “Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
[Crossref]

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

D. Evanoff, R. White, and G. Chumanov, “Measuring the distance dependence of the local electromagnetic field from silver nanoparticles,” J. Phys. Chem. B 108, 1522–1524 (2004).
[Crossref]

Journ. Fluor. (1)

A. Haes, D. Stuart, S. Nie, and R. Van Duyne, “Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms,” Journ. Fluor. 14, 355–367 (2004).
[Crossref]

Nano Letters (2)

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Letters 3, 935–938 (2003).
[Crossref]

K. Su, Q. Wei, X. Zhang, J. Mock, D. Smith, and S. Schultz. “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Letters 3, 1087–1090 (2003).
[Crossref]

New J. Phys. (1)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Plasmon resonance in large noble-metal clusters,” New J. Phys. 4, 93.1–93.8 (2002).
[Crossref]

Phys. Rev. B (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Physica (1)

P. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate” Physica 137A, 209–242 (1986).

Sensors and Actuators B (1)

H. Xu and M. Käll, “Modeling the optical response of nanoparticle-based surface plasmon resonance sensors,” Sensors and Actuators B 87, 244–249 (2002).
[Crossref]

Topics Appl. Phys. (1)

T. Okamoto, “Near-field spectral analysis of metallic beads,” Topics Appl. Phys. 81, 97–123 (2001).
[Crossref]

Other (2)

http://www.philiplaven.com

M. Miller and A. Lazarides, “Controlling the sensing volume of metal nanosphere molecular sensors,” in Nanoengineered Assemblies and Advanced Micro/Nanosystems, edited by David P. Taylor, Jun Liu, David McIlroy, Lhadi Merhari, J.B. Pendry, Jeffrey T. Borenstein, Piotr Grodzinski, Luke P. Lee, and Zhong Lin Wang (Mater. Res. Soc. Symp. Proc. 820, Warrendale, PA,2004), pp 407–413.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Darkfield microspectroscopy system schematic. Darkfield microscope images individual NPs. Output selector allows image to be directed to either imaging camera for registration or to line-imaging spectrometer, which collects 400 spectra along a line through the microscope field of view.

Fig. 2.
Fig. 2.

Data for a polydisperse silver sample: (a) darkfield image of NP sample, (b) spectrometer spectral stack for region of interest, and (c) spectrum of individual particle at line 160.

Fig. 3.
Fig. 3.

Spectra of particles A, B, and C immersed in index-matching oil.

Fig. 4.
Fig. 4.

Scattering spectra for particle D in water and in index-matching oil. The results are best-fit using a weighting factor of α=0.58 to determine an effective refractive index for Mie calculations.

Fig. 5.
Fig. 5.

Scattering spectra for particles E and F in water and glycerol. The results are best-fit to Mie calculated SPR spectra by varying weighting factor and particle diameter. Only one combination, a diameter of 76 nm and a weighting factor of α=0.58, accurately reproduces the experimentally measured spectra.

Fig. 6.
Fig. 6.

Derivation of weighting factor by shell approximation to particle sensitivity

Fig. 7.
Fig. 7.

Derivation of weighting factor based on exponentially decreasing particle sensitivity. R is the sphere radius, and r0 is the 1/e sensitivity radius, measured from the sphere surface

Tables (3)

Tables Icon

Table 1. SPR peak wavelengths for particles A, B, and C

Tables Icon

Table 2. SPR peak wavelengths for particle D

Tables Icon

Table 3. SPR peak wavelengths for particles E and F

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n eff = α · n medium + ( 1 α ) n substrate

Metrics