## Abstract

We report self-pulsed operation of fiber Raman master oscillator power amplifiers, in which the amplifier and oscillator are pumped by one pump source successively. The pulse period is one or half of the round-trip time of the oscillator, depending on the optical length of the amplifier. A simple model is constructed to explain the observations qualitatively.

© 2005 Optical Society of America

Full Article |

PDF Article
### Equations (10)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$\frac{\partial P}{\partial z}+\frac{1}{v}\frac{\partial P}{\partial t}=-{g}_{r}\frac{{\upsilon}_{p}}{{\upsilon}_{R}}P\left({I}^{+}+{I}^{-}+2h{\upsilon}_{P}B\right)-{\alpha}_{P}P$$
(2)
$$\frac{\partial {I}^{+}}{\partial z}+\frac{1}{\nu}\frac{\partial {I}^{+}}{\partial t}={g}_{r}P\left({I}^{+}+h{\upsilon}_{R}B\right)-{\alpha}_{R}{I}^{+}$$
(3)
$$\frac{\partial {I}^{-}}{\partial z}-\frac{1}{v}\frac{\partial {I}^{-}}{\partial t}=-{g}_{r}P\left({I}^{-}+h{\upsilon}_{R}B\right)+{\alpha}_{R}{I}^{-},$$
(4)
$$P\left(0\right)={P}_{0}$$
(5)
$${I}^{+}\left(0\right)=0$$
(6)
$${I}_{l}^{-}\left(La\right)={I}_{r}^{-}\left(La\right)\xb7\left(1-{R}_{1}\right)+{I}_{l}^{+}\left(La\right)\xb7{R}_{1}$$
(7)
$${I}_{r}^{+}\left(La\right)={I}_{r}^{-}\left(La\right)\xb7{R}_{1}+{I}_{l}^{+}\left(La\right)\xb7\left(1-{R}_{1}\right)$$
(8)
$${I}^{-}\left(La+L\right)={I}^{+}\left(La+L\right)\xb7{R}_{2}$$
(9)
$${I}^{+}(z,t)=\sum _{m=0}^{\infty}{C}_{{I}^{+}m}\left(z\right)\mathrm{cos}\left(mk\left(z-vt\right)+{\varphi}_{{I}^{+}m}\right)$$
(10)
$${I}^{-}(z,t)=\sum _{m=0}^{\infty}{C}_{{I}^{-}m}\left(z\right)\mathrm{cos}\left(mk\left(z+vt\right)+{\varphi}_{{I}^{-}m}\right).$$