Abstract

The photosensitivity of Ge-doped silica fiber using 213nm, 150ps Nd:YAG radiation, is presented here for first time. Refractive index changes greater than 10-3 were measured in Bragg grating reflectors recorded in a low-Ge content fiber, using average intensities of ≈0.35GW/cm2. Grating growth curves for 213nm inscription wavelength are presented and discussed, in comparison with data obtained using 248nm excimer laser radiation. The experimental results presented denote that contrary to the recording using longer laser wavelengths and pulse durations, the grating inscription employing 213nm picosecond radiation is dominated by a two-photon absorption, which role becomes prominent in long-exposures.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M.Douay, W.X.Xie, T.Taunay, P.Bernage, P.Niay, P.Cordier, B.Poumellec, L.Dong, J.F.Bayron, H.Poignant, E.Delevaque, �??Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,�?? J. Lightwave Technol. 15, 1329-1342 (1997).
    [CrossRef]
  2. J.Albert, B.Malo, K.O.Hill, F.Bilodeau, D.C.Johnson, S.Theriault, �??Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,�?? Appl. Phys. Lett. 67, 3529-3531 (1995).
    [CrossRef]
  3. K.P.Chen, P.R.Herman, J.Zhang, R.Tam, �??Fabrication of strong long-period gratings in hydrogen-free fibers wth 157-nm F2 laser radiation,�?? Opt. Lett. 26, 771-773 (2001)
    [CrossRef]
  4. S.J.Michailov, C.W.Smelser, D.Grobnic, R.B.Walker, P.Lu, H.Ding, J.Unruh, �??Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800nm femtosecond radiation and a phase mask,�?? J. Lightwave Technol. 22, 94-100 (2004)
    [CrossRef]
  5. S.Pissadakis, L.Reekie, �??An elliptical Talbot interferometer for fiber Bragg grating fabrication,�?? Rev. Sci. Instr. (submitted)
  6. For more details on GF1B fiber specifications see Nufern website: <a href= "http://www.nufern.com">http://www.nufern.com</a>.
  7. T. Erdogan, �??Fiber grating spectra,�?? J. Lightwave Technol. 15, 1277-1294 (2004)
    [CrossRef]
  8. S.Pissadakis, M.N.Zervas, L.Reekie, J.S.Wilkinson, �??UV interferometric ablation and structural modification for the fabrication of sub-micron scale periodic structures in hard optical materials,�?? in Proceedings of International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineers, Wroclaw, 2004), pp. 313-318
  9. H.J.Deyerl, N.Plougmann, J.B.Jensen, F.Floreani, H.R.Sorensen, M.Kristensen, �??Fabrication of advanced Bragg gratings with complex apodization profiles by use of the polarization control method,�?? Appl. Opt. 43, 3513-3522 (2004)
    [CrossRef] [PubMed]
  10. R.E.Schenker, W.G.Oldham, �??Ultraviolet-induced densification in fused silica,�?? J. Appl. Phys. 82, 1065-1071 (1997)
    [CrossRef]
  11. D.C.Allan, C.Smith, N.F.Borrelli, T.P.Seward III, �??193-nm excimer-laser-induced densification of fused silica,�?? Opt. Lett. 21, 1960-1962 (1996)
    [CrossRef] [PubMed]
  12. N.F.Borrelli, D.C.Allan, R.A.Modavis, �??Direct measurement of 248- and 193-nm excimer-induced densification in silica germania waveguide blanks,�?? J. Opt. Soc. Am. B 16, 1672-1679 (1999)
    [CrossRef]
  13. J.-L.Archambault, �??Photorefractive gratings in optical fibres,�?? PhD thesis, University of Southampton (1994)
  14. S.A.Slattery, D.N.Nikogosyan, �??Two-photon absorption at 211 nm in fused silica, crystalline quartz and some alkali halides,�?? Opt. Commun. 228, 127-131 (2003)
    [CrossRef]
  15. A.Dragomir, J.G.McInerney, D.N.Nikogosyan, P.G.Kazansky, �??Two-photon absorption properties of commercial fused silica and germanosilicate glass at 264nm,�?? Appl. Phys. Lett. 80, 1114-1116 (2002)
    [CrossRef]
  16. J.Albert, K.O.Hill, D.C.Johnson, F.Bilodeau, S.J.Mihailov, N.F.Borrelli, J.Amin, �??Bragg gratings in defect-free germanium-doped optical fibers,�?? Opt. Lett. 24, 1266-1268 (1999)
    [CrossRef]
  17. M.Fujimaki, T.Watanabe, T.Katoh, T.Kasahara, N.Miyazaki, Y.Ohki, H.Nishikawa �??Structures and generation mechanisms of paramagnetic centers and absorption bands responsible for Ge-doped SiO2 optical-fiber gratings,�?? Phys. Rev. B 57, 3920-3926 (1998)
    [CrossRef]
  18. H.Hosono, H.Kawazoe, J.Nishii, �??Defect formation in SiO2:GeO2 glasses studied by irradiation with excimer laser light,�?? Phys. Rev. B 53, R11921-R11923 (1996)
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J.Albert, B.Malo, K.O.Hill, F.Bilodeau, D.C.Johnson, S.Theriault, �??Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,�?? Appl. Phys. Lett. 67, 3529-3531 (1995).
[CrossRef]

A.Dragomir, J.G.McInerney, D.N.Nikogosyan, P.G.Kazansky, �??Two-photon absorption properties of commercial fused silica and germanosilicate glass at 264nm,�?? Appl. Phys. Lett. 80, 1114-1116 (2002)
[CrossRef]

Conf. Transparent Optical Networks 2004 (1)

S.Pissadakis, M.N.Zervas, L.Reekie, J.S.Wilkinson, �??UV interferometric ablation and structural modification for the fabrication of sub-micron scale periodic structures in hard optical materials,�?? in Proceedings of International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineers, Wroclaw, 2004), pp. 313-318

J. Appl. Phys. (1)

R.E.Schenker, W.G.Oldham, �??Ultraviolet-induced densification in fused silica,�?? J. Appl. Phys. 82, 1065-1071 (1997)
[CrossRef]

J. Lightwave Technol. (3)

M.Douay, W.X.Xie, T.Taunay, P.Bernage, P.Niay, P.Cordier, B.Poumellec, L.Dong, J.F.Bayron, H.Poignant, E.Delevaque, �??Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,�?? J. Lightwave Technol. 15, 1329-1342 (1997).
[CrossRef]

T. Erdogan, �??Fiber grating spectra,�?? J. Lightwave Technol. 15, 1277-1294 (2004)
[CrossRef]

S.J.Michailov, C.W.Smelser, D.Grobnic, R.B.Walker, P.Lu, H.Ding, J.Unruh, �??Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800nm femtosecond radiation and a phase mask,�?? J. Lightwave Technol. 22, 94-100 (2004)
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

S.A.Slattery, D.N.Nikogosyan, �??Two-photon absorption at 211 nm in fused silica, crystalline quartz and some alkali halides,�?? Opt. Commun. 228, 127-131 (2003)
[CrossRef]

Opt. Lett. (3)

Phys. Rev. (1)

M.Fujimaki, T.Watanabe, T.Katoh, T.Kasahara, N.Miyazaki, Y.Ohki, H.Nishikawa �??Structures and generation mechanisms of paramagnetic centers and absorption bands responsible for Ge-doped SiO2 optical-fiber gratings,�?? Phys. Rev. B 57, 3920-3926 (1998)
[CrossRef]

Phys. Rev. B (1)

H.Hosono, H.Kawazoe, J.Nishii, �??Defect formation in SiO2:GeO2 glasses studied by irradiation with excimer laser light,�?? Phys. Rev. B 53, R11921-R11923 (1996)
[CrossRef]

Rev. Sci. Instr. (1)

S.Pissadakis, L.Reekie, �??An elliptical Talbot interferometer for fiber Bragg grating fabrication,�?? Rev. Sci. Instr. (submitted)

Other (2)

For more details on GF1B fiber specifications see Nufern website: <a href= "http://www.nufern.com">http://www.nufern.com</a>.

J.-L.Archambault, �??Photorefractive gratings in optical fibres,�?? PhD thesis, University of Southampton (1994)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup used for recording and interrogating fiber Bragg using 213nm Nd:YAG radiation. RA: rectangular aperture. OP: oscillating plate. CL: cylindrical lens. PM: phase mask. M1, M2: 45° beam folding mirrors. EDFA: erbium doped fiber amplifier. FC: 50/50 fiber coupler. PF: photosensitive fiber. OSA: optical spectrum analyzer.

Fig. 2.
Fig. 2.

(a) Grating strength growth diagram vs. total energy density for GF1B fibre using 213nm Nd:YAG laser radiation, with 42mJ/cm2 energy density per pulse. (b) Average index change Δnav vs. total energy density for GF1B fibre using 213nm Nd:YAG laser (normal triangles), and 248nm excimer laser (circles) radiation. Red solid line: power law regression for average index change induced by 213nm laser radiation.

Fig. 3.
Fig. 3.

Transmission spectrum of a 3.5mm long Bragg grating recorded in a GF1B fibre using 74440 pulses and 40mJ/cm2 energy density, using 213nm radiation. Grating strength ≈-14.5dB.

Fig. 4.
Fig. 4.

Isochronal annealing data of a grating recorded using 213nm Nd:YAG (red triangles/line) and 248nm excimer (black squares/line) laser radiation. Exposure conditions: (a) 213nm, 36000 pulses, 32mJ/cm2, (b) 248nm, 36000 pulses, 360mJ/cm2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n a v ( N F 2 τ ) b

Metrics