Abstract

More than 27 mW of 492-nm power was generated in a compact design, using intra-cavity sum frequency mixing of a laser diode and a diode-pumped solid-state laser in a periodically-poled KTiOPO4 crystal.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. W.P. Risk, T.R. Gosnell and A.V. Nurmikko, Compact Blue-Green Lasers (Cambridge University Press, 2003).
    [CrossRef]
  2. L. Marshall, �??Many variant lasers compete in the blue,�?? Laser Focus World, October, 79-83 (2004).
  3. F. Laurell: "Periodically poled materials for miniature light sources,�?? Opt. Mat. 11, 235-244 (1999).
    [CrossRef]
  4. T.D. Raymond, W.J. Alford, M.H. Crawford and A.A. Allerman: �??Intracavity frequency doubling of a diode-pumped external-cavity surface-emitting semiconductor laser,�?? Opt. Lett. 24 , 1127-1129 (1999).
    [CrossRef]
  5. A. Caprara, J.L. Chilla and L.A. Spinelli: �??High power external-cavity optically-pumped semiconductor lasers,�?? US Patent 6,097,742 (2000).
  6. E. Schielen, M. Golling and P. Unger: �??Diode-pumped semiconductor disk laser with intracavity frequency doubling using lithium triborate (LBO),�?? IEEE Photonics Tech. Lett. 14, 777-779 (2002).
    [CrossRef]
  7. E.U. Rafailov, W. Sibbett, A. Mooradian, J. G. McInerney, H. Karlsson, S. Wang and F.Laurell: �??Efficient frequency doubling of a vertical-extended-cavity-surface-emitting laser diode by use of a periodically poled KTP crystal,�?? Opt. Lett. 28, 2091-2093 (2003).
    [CrossRef] [PubMed]
  8. M. Pierrou, F. Laurell, H. Karlsson, T. Kellner, C. Czeranowsky and G. Huber: �??Generation of 740 mW of blue light by intracavity frequency doubling with a first-order quasi-phase-matched KTiOPO4 crystal,�?? Opt. Lett. 24, 205-207 (1999).
    [CrossRef]
  9. C. Czeranowsky, E. Heumann and G. Huber:�??All-solid-state continuous wave frequency-doubled Nd:YAG-BiBO laser with 2.8-W output power ar 473 nm,�?? Opt. Lett. 28, 432-434 (2003).
    [CrossRef] [PubMed]
  10. J.C. Bienfang, C.A. Denman, B.W. Grime, P.D. Hillman, G.T. Moore and J.M. Telle: �??20 W of continuous wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers,�?? Opt. Lett. 24, 691-693 (1999).
    [CrossRef]
  11. N. Saito, K. Akagawa, Y. Hayano, Y. Saito, H. Takami and S. Wada: �??An efficient method for quasi-continuous-wave generation of 589 nm by sum-frequency mixing in periodically poled KTP,�?? in Advanced Solid-State Photonics, J. J. Zayhowski and G.J. Quarles, eds., Nineteenth Topical Meeting and Tabletop Exhibit (Optical Society of America, Santa Fe, New Mexico, 2004).
  12. J. Janousek, S. Johansson, P. Tidemand-Lichtenberg, J. Mortensen, P. Buchhave and F. Laurell: �??Efficient all solid-state continuous-wave yellow-orange light source,�?? Opt. Express 13, 1188-1192 (2005).
    [CrossRef] [PubMed]
  13. W.P. Risk, J.C. Baumert, G.C. Bjorklund, F.M. Schellenberg and W. Lenth: �??Generation of blue light by intracavity mixing of the laser and pump radiation of a miniature neodymium:yttrium garnet laser,�?? Appl. Phys. Lett. 52, 85-87 (1988).
    [CrossRef]
  14. D.W. Anthon, G.J. Dixon, M.G. Ressl and T.J. Pier: �??Nd:YAG-diode laser summation in KTP for a high modulation rate blue laser,�?? in Miniature Optics and Lasers, Proc. SPIE, 898, 68-69 (1988).
  15. W.P. Risk and W. Lenth: �??Diode laser pumped blue-light source based on intracavity sum frequency generation,�?? Appl. Phys. Lett. 54, 789-791 (1989).
    [CrossRef]
  16. P.N. Kean, R.W. Standley and G.J. Dixon: �??Generation of 20 mW of blue laser radiation from a diode-pumped sum-frequency laser,�?? Appl. Phys. Lett. 63, 302-304 (1993).
    [CrossRef]
  17. L. Goldberg, M.K. Chun, I.N. Duling and T.F. Carruthers: �??Blue light generation by nonlinear mixing of Nd:YAG and GaAlAs laser emission in a KNbO3 resonant cavity,�?? Appl. Phys. Lett. 56, 2071- 2073 (1990).
    [CrossRef]
  18. W.P. Risk and W.J. Kozlovsky: �??Efficient generation of blue light by doubly resonant sum-frequency mixing in a monolithic KTP resonator,�?? Opt. Lett. 17, 707-709 (1992).
    [CrossRef] [PubMed]
  19. S. Johansson, S. Spiekermann, S. Wang, V. Pasiskevicus, F. Laurell and K. Ekvall: �??Generation of turquoise light by sum frequency mixing of a diode-pumped solid-state laser and laser diode in periodically poled KTP,�?? Opt. Exp. 12, 4935-4940 (2004).
    [CrossRef]
  20. S. Wang, V. Pasiskevicius, and F. Laurell: �??Dynamics of green light-induced infrared absorption in KTiOPO4,�?? J. Appl. Phys. 96, 2023-2028 (2004).
    [CrossRef]
  21. T. Baer: �??Large-amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd:YAG lasers,�?? J. Opt. Soc. Am. B 3, 1175-1180 (1986).
    [CrossRef]
  22. M.M. Fejer, G.A. Magel, D.H. Jundt and R.L. Byer: �??Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,�?? IEEE J. Quantum Electron. 28, 2631-2654 (1992).
    [CrossRef]

Advanced Solid-State Photonics 2004 (1)

N. Saito, K. Akagawa, Y. Hayano, Y. Saito, H. Takami and S. Wada: �??An efficient method for quasi-continuous-wave generation of 589 nm by sum-frequency mixing in periodically poled KTP,�?? in Advanced Solid-State Photonics, J. J. Zayhowski and G.J. Quarles, eds., Nineteenth Topical Meeting and Tabletop Exhibit (Optical Society of America, Santa Fe, New Mexico, 2004).

Appl. Phys. (1)

S. Wang, V. Pasiskevicius, and F. Laurell: �??Dynamics of green light-induced infrared absorption in KTiOPO4,�?? J. Appl. Phys. 96, 2023-2028 (2004).
[CrossRef]

Appl. Phys. Lett. (4)

W.P. Risk, J.C. Baumert, G.C. Bjorklund, F.M. Schellenberg and W. Lenth: �??Generation of blue light by intracavity mixing of the laser and pump radiation of a miniature neodymium:yttrium garnet laser,�?? Appl. Phys. Lett. 52, 85-87 (1988).
[CrossRef]

W.P. Risk and W. Lenth: �??Diode laser pumped blue-light source based on intracavity sum frequency generation,�?? Appl. Phys. Lett. 54, 789-791 (1989).
[CrossRef]

P.N. Kean, R.W. Standley and G.J. Dixon: �??Generation of 20 mW of blue laser radiation from a diode-pumped sum-frequency laser,�?? Appl. Phys. Lett. 63, 302-304 (1993).
[CrossRef]

L. Goldberg, M.K. Chun, I.N. Duling and T.F. Carruthers: �??Blue light generation by nonlinear mixing of Nd:YAG and GaAlAs laser emission in a KNbO3 resonant cavity,�?? Appl. Phys. Lett. 56, 2071- 2073 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

M.M. Fejer, G.A. Magel, D.H. Jundt and R.L. Byer: �??Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,�?? IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

IEEE Photonics Tech. Lett. (1)

E. Schielen, M. Golling and P. Unger: �??Diode-pumped semiconductor disk laser with intracavity frequency doubling using lithium triborate (LBO),�?? IEEE Photonics Tech. Lett. 14, 777-779 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Focus World (1)

L. Marshall, �??Many variant lasers compete in the blue,�?? Laser Focus World, October, 79-83 (2004).

Opt. Exp. (1)

S. Johansson, S. Spiekermann, S. Wang, V. Pasiskevicus, F. Laurell and K. Ekvall: �??Generation of turquoise light by sum frequency mixing of a diode-pumped solid-state laser and laser diode in periodically poled KTP,�?? Opt. Exp. 12, 4935-4940 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Opt. Mat. (1)

F. Laurell: "Periodically poled materials for miniature light sources,�?? Opt. Mat. 11, 235-244 (1999).
[CrossRef]

Proc. SPIE (1)

D.W. Anthon, G.J. Dixon, M.G. Ressl and T.J. Pier: �??Nd:YAG-diode laser summation in KTP for a high modulation rate blue laser,�?? in Miniature Optics and Lasers, Proc. SPIE, 898, 68-69 (1988).

Other (2)

A. Caprara, J.L. Chilla and L.A. Spinelli: �??High power external-cavity optically-pumped semiconductor lasers,�?? US Patent 6,097,742 (2000).

W.P. Risk, T.R. Gosnell and A.V. Nurmikko, Compact Blue-Green Lasers (Cambridge University Press, 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The experimental set-up.

Fig. 2.
Fig. 2.

492-nm CW output power as a function of the circulating 1064 nm power for fixed LD power (at 170 mW).

Fig. 3.
Fig. 3.

(a). (left) The spectrum of the SFM signal at an output power of 27 mW. The total bandwidth is approximately 0.4 nm. (b). (right) The 492-nm output power as a function of the temperature of the PPKTP crystal. Measured data is represented by the squares and the curve is a sinc-fit of the data. The temperature bandwidth, ΔTFWHM=5.3 °C.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η SFM = P SFM P LD · P DPSSL · L ,

Metrics