Abstract

We present a fast scanning fluorescence optical tomography system for imaging the kinetics of probe distributions through out the whole body of small animals. Configured in a plane parallel geometry, the system scans a source laser using a galvanometer mirror pair (τswitch~1ms) over flexible source patterns, and detects excitation and emission light using a high frame rate low noise, 5 MHz electron multiplied charge-coupled device (EMCCD) camera. Phantom studies were used to evaluate resolution, linearity, and sensitivity. Time dependent (δt=2.2 min.) in vivo imaging of mice was performed following injections of a fluorescing probe (indocyanine green). The capability to detect differences in probe delivery route was demonstrated by comparing an intravenous injection, versus an injection into a fat pocket (retro orbital injection). Feasibility of imaging the distribution of tumor-targeted molecular probes was demonstrated by imaging a breast tumor-specific near infrared polypeptide in MDA MB 361 tumor bearing nude mice. A tomography scan, at 24 hour post injection, revealed preferential uptake in the tumor relative to surrounding tissue.

© 2005 Optical Society of America

Full Article  |  PDF Article
Related Articles
Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans

Alper Corlu, Regine Choe, Turgut Durduran, Mark A. Rosen, Martin Schweiger, Simon R. Arridge, Mitchell D. Schnall, and Arjun G. Yodh
Opt. Express 15(11) 6696-6716 (2007)

In-vivo fluorescence imaging of mammalian organs using charge-assembled mesocapsule constructs containing indocyanine green

Mohammad A. Yaseen, Jie Yu, Michael S. Wong, and Bahman Anvari
Opt. Express 16(25) 20577-20587 (2008)

Principal component analysis of dynamic fluorescence diffuse optical tomography images

Xin Liu, Daifa Wang, Fei Liu, and Jing Bai
Opt. Express 18(6) 6300-6314 (2010)

References

  • View by:
  • |
  • |
  • |

  1. S. Achilefu, R.B. Dorshow, J.E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
    [Crossref] [PubMed]
  2. C. Bremer, S. Bredow, U. Mahmood, R. Weissleder, and C.H. Tung, “Optical imaging of matrix metalloproteinase-2 activity in tumors: Feasibility study in a mouse model,” Radiol. 221, 523–529 (2001).
    [Crossref]
  3. J.E. Bugaj, S. Achilefu, R.B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
    [Crossref] [PubMed]
  4. B.W. Pogue, S.L. Gibbs, B. Chen, and M. Savellano, “Fluorescence imaging in vivo: Raster scanned point-source imaging provides more accurate quantification than broad beam geometries,” Tech. in Cancer Research & Treatment 3, 15–21 (2004).
  5. J.C. Hebden and K.S. Wong, “Time-Resolved Optical Tomography,” Appl. Opt. 32, 372–380 (1993).
    [Crossref] [PubMed]
  6. R.L. Barbour, H.L. Graber, J.W. Chang, S.L.S. Barbour, P.C. Koo, and R. Aronson, “MRI-guided optical tomography: Prospects and computation for a new imaging method,” IEEE Compu. Sc. & Engg. 2, 63–77 (1995).
    [Crossref]
  7. B.W. Pogue, M.S. Patterson, H. Jiang, and K.D. Paulsen, “Initial Assessment of a Simple System For Frequency-Domain Diffuse Optical Tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
    [Crossref] [PubMed]
  8. M.A. Oleary, D.A. Boas, B. Chance, and A.G. Yodh, “Experimental Images of Heterogeneous Turbid Media By Frequency- Domain Diffusing-Photon Tomography,” Opt. Lett. 20, 426–428 (1995).
    [Crossref]
  9. C.P. Gonatas, M. Ishii, J.S. Leigh, and J.C. Schotland, “Optical Diffusion Imaging Using a Direct Inversion Method,” Phys. Rev. E 52, 4361–4365 (1995).
    [Crossref]
  10. V. Ntziachristos and R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys. 29, 803–809 (2000).
    [Crossref]
  11. V. Ntziachristos, C.H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
    [Crossref] [PubMed]
  12. V. Ntziachristos, C. Bremer, C. Tung, and R. Weissleder, “Imaging cathepsin B up-regulation in HT-1080 tumor models using fluorescence-mediated molecular tomography (FMT),” Acad. Radiol. 9, 323–325 (2002).
    [Crossref]
  13. E.E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).
    [Crossref] [PubMed]
  14. E.E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence molecular imaging of small animal tumor models,” Current Molecular Medicine 4, 419–430 (2004).
    [Crossref] [PubMed]
  15. V. Ntziachristos, E.A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. National Academy of Sciences of the United States of America 101, 12294–12299 (2004).
    [Crossref]
  16. J.P. Culver, R. Choe, M.J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A.G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
    [Crossref] [PubMed]
  17. R.B. Schulz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23, 492–500 (2004).
    [Crossref] [PubMed]
  18. A. Godavarty, M.J. Eppstein, C.Y. Zhang, S. Theru, A.B. Thompson, M. Gurfinkel, and E.M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
    [Crossref] [PubMed]
  19. A. Godavarty, C. Zhang, M.J. Eppstein, and E.M. Sevick-Muraca, “Fluorescence-enhanced optical imaging of large phantoms using single and simultaneous dual point illumination geometries,” Med. Phys. 31, 183–190 (2004).
    [Crossref] [PubMed]
  20. C.H. Schmitz, H.L. Graber, H.B. Luo, I. Arif, J. Hira, Y.L. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S.L.S. Barbour, and R.L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000).
    [Crossref]
  21. V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893–895 (2001).
    [Crossref]
  22. M.A. Oleary, D.A. Boas, X.D. Li, B. Chance, and A.G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
    [Crossref]
  23. R.C. Haskell, L.O. Svaasand, T.T. Tsay, T.C. Feng, and M.S. McAdams, “Boundary-Conditions For the Diffusion Equation in Radiative- Transfer,” J. Opt. Soc. Am. A - Optics Image Science and Vision 11, 2727–2741 (1994).
    [Crossref]
  24. M.S. Patterson, B. Chance, and B.C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [Crossref] [PubMed]
  25. A.C. Kak and M. Slaney, “Principles of Computerized Tomographic Imaging,” New York: IEEE Press (1988).
  26. S.A. Eccles, W.J. Court, G.A. Box, C.J. Dean, and R.G. Melton, “Regression of Established Breast-Carcinoma Xenografts with Antibody-Directed Enzyme Prodrug Therapy against C-Erbb2 P185,” Cancer Res. 54, 5171–5177 (1994).
    [PubMed]
  27. E.M.C. Hillman, D.A. Boas, A.M. Dale, and A.K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett. 29, 1650–1652 (2004).
    [Crossref] [PubMed]
  28. A. Dunn and D. Boas, “Transport-based image reconstruction in turbid media with small source-detector separations,” Opt. Lett. 25, 1777–1779 (2000).
    [Crossref]
  29. X.D. Li, T. Durduran, A.G. Yodh, B. Chance, and D.N. Pattanayak, “Diffraction tomography for biochemical imaging with diffuse- photon density waves,” Optics Letters 22, 573–575 (1997).
    [Crossref] [PubMed]
  30. J.C. Schotland, “Continuous-wave diffusion imaging,” J. Opt. Soc. Am. A - Optics Image Science and Vision 14, 275–279 (1997).
    [Crossref]
  31. V.A. Markel and J.C. Schotland, “Inverse problem in optical diffusion tomography. I. Fourier- Laplace inversion formulas,” J. Opt. Soc. Am. A - Optics Image Science and Vision 18, 1336–1347 (2001).
    [Crossref]
  32. C.L. Matson, N. Clark, L. McMackin, and J.S. Fender, “Three-dimensional tumor localization in thick tissue with the use of diffuse photon-density waves,” Appl. Opt. 36, 214–220 (1997).
    [Crossref] [PubMed]
  33. T. Durduran, J.P. Culver, M.J. Holboke, X.D. Li, L. Zubkov, B. Chance, D.N. Pattanayak, and A.G. Yodh, “Algorithms for 3D localization and imaging using near-field diffraction tomography with diffuse light,” Opt. Exp. 4, 247–262 (1999).
    [Crossref]
  34. S. Achilefu and R.B. Dorshow, “Dynamic and Continuous Monitoring of Renal and Hepatic Functions with Exogenous Markers,” Topics in Current Chemistry. Springer-Verlag: Berlin Heidelberg (2002).
  35. X. Intes, J. Ripoll, Y. Chen, S. Nioka, A.G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30, 1039–1047 (2003).
    [Crossref] [PubMed]
  36. V. Ntziachristos, A.G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. National Academy of Sciences of the United States of America 97, 2767–2772 (2000).
    [Crossref]
  37. D.J. Cuccia, F. Bevilacqua, A.J. Durkin, S. Merritt, B.J. Tromberg, G. Gulsen, H. Yu, J. Wang, and O. Nalcioglu, “In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration,” Appl. Opt. 42, 2940–50 (2003).
    [Crossref] [PubMed]
  38. M. Gurfinkel, A.B. Thompson, W. Ralston, T.L. Troy, A.L. Moore, T.A. Moore, J.D. Gust, D. Tatman, J.S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R.H. Mayer, D.J. Hawrysz, and E.M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: A case study,” Photochem. Photobiol. 72, 94–102 (2000).
    [Crossref] [PubMed]
  39. S. Srinivasan, B.W. Pogue, H. Dehghani, S.D. Jiang, X.M. Song, and K.D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161–1171 (2004).
    [Crossref] [PubMed]
  40. B.W. Pogue, C. Willscher, T.O. McBride, U.L. Osterberg, and K.D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
    [Crossref]
  41. H. Dehghani, B.W. Pogue, S.D. Jiang, B. Brooksby, and K.D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128 (2003).
    [Crossref] [PubMed]

2004 (7)

E.E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence molecular imaging of small animal tumor models,” Current Molecular Medicine 4, 419–430 (2004).
[Crossref] [PubMed]

V. Ntziachristos, E.A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. National Academy of Sciences of the United States of America 101, 12294–12299 (2004).
[Crossref]

R.B. Schulz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23, 492–500 (2004).
[Crossref] [PubMed]

A. Godavarty, C. Zhang, M.J. Eppstein, and E.M. Sevick-Muraca, “Fluorescence-enhanced optical imaging of large phantoms using single and simultaneous dual point illumination geometries,” Med. Phys. 31, 183–190 (2004).
[Crossref] [PubMed]

B.W. Pogue, S.L. Gibbs, B. Chen, and M. Savellano, “Fluorescence imaging in vivo: Raster scanned point-source imaging provides more accurate quantification than broad beam geometries,” Tech. in Cancer Research & Treatment 3, 15–21 (2004).

S. Srinivasan, B.W. Pogue, H. Dehghani, S.D. Jiang, X.M. Song, and K.D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161–1171 (2004).
[Crossref] [PubMed]

E.M.C. Hillman, D.A. Boas, A.M. Dale, and A.K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett. 29, 1650–1652 (2004).
[Crossref] [PubMed]

2003 (6)

D.J. Cuccia, F. Bevilacqua, A.J. Durkin, S. Merritt, B.J. Tromberg, G. Gulsen, H. Yu, J. Wang, and O. Nalcioglu, “In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration,” Appl. Opt. 42, 2940–50 (2003).
[Crossref] [PubMed]

H. Dehghani, B.W. Pogue, S.D. Jiang, B. Brooksby, and K.D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128 (2003).
[Crossref] [PubMed]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A.G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30, 1039–1047 (2003).
[Crossref] [PubMed]

E.E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).
[Crossref] [PubMed]

A. Godavarty, M.J. Eppstein, C.Y. Zhang, S. Theru, A.B. Thompson, M. Gurfinkel, and E.M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[Crossref] [PubMed]

J.P. Culver, R. Choe, M.J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A.G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[Crossref] [PubMed]

2002 (2)

V. Ntziachristos, C.H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[Crossref] [PubMed]

V. Ntziachristos, C. Bremer, C. Tung, and R. Weissleder, “Imaging cathepsin B up-regulation in HT-1080 tumor models using fluorescence-mediated molecular tomography (FMT),” Acad. Radiol. 9, 323–325 (2002).
[Crossref]

2001 (4)

C. Bremer, S. Bredow, U. Mahmood, R. Weissleder, and C.H. Tung, “Optical imaging of matrix metalloproteinase-2 activity in tumors: Feasibility study in a mouse model,” Radiol. 221, 523–529 (2001).
[Crossref]

J.E. Bugaj, S. Achilefu, R.B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[Crossref] [PubMed]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893–895 (2001).
[Crossref]

V.A. Markel and J.C. Schotland, “Inverse problem in optical diffusion tomography. I. Fourier- Laplace inversion formulas,” J. Opt. Soc. Am. A - Optics Image Science and Vision 18, 1336–1347 (2001).
[Crossref]

2000 (7)

V. Ntziachristos, A.G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. National Academy of Sciences of the United States of America 97, 2767–2772 (2000).
[Crossref]

M. Gurfinkel, A.B. Thompson, W. Ralston, T.L. Troy, A.L. Moore, T.A. Moore, J.D. Gust, D. Tatman, J.S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R.H. Mayer, D.J. Hawrysz, and E.M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: A case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref] [PubMed]

B.W. Pogue, C. Willscher, T.O. McBride, U.L. Osterberg, and K.D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[Crossref]

C.H. Schmitz, H.L. Graber, H.B. Luo, I. Arif, J. Hira, Y.L. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S.L.S. Barbour, and R.L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000).
[Crossref]

A. Dunn and D. Boas, “Transport-based image reconstruction in turbid media with small source-detector separations,” Opt. Lett. 25, 1777–1779 (2000).
[Crossref]

S. Achilefu, R.B. Dorshow, J.E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[Crossref] [PubMed]

V. Ntziachristos and R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys. 29, 803–809 (2000).
[Crossref]

1999 (1)

T. Durduran, J.P. Culver, M.J. Holboke, X.D. Li, L. Zubkov, B. Chance, D.N. Pattanayak, and A.G. Yodh, “Algorithms for 3D localization and imaging using near-field diffraction tomography with diffuse light,” Opt. Exp. 4, 247–262 (1999).
[Crossref]

1997 (3)

X.D. Li, T. Durduran, A.G. Yodh, B. Chance, and D.N. Pattanayak, “Diffraction tomography for biochemical imaging with diffuse- photon density waves,” Optics Letters 22, 573–575 (1997).
[Crossref] [PubMed]

J.C. Schotland, “Continuous-wave diffusion imaging,” J. Opt. Soc. Am. A - Optics Image Science and Vision 14, 275–279 (1997).
[Crossref]

C.L. Matson, N. Clark, L. McMackin, and J.S. Fender, “Three-dimensional tumor localization in thick tissue with the use of diffuse photon-density waves,” Appl. Opt. 36, 214–220 (1997).
[Crossref] [PubMed]

1996 (1)

1995 (4)

M.A. Oleary, D.A. Boas, B. Chance, and A.G. Yodh, “Experimental Images of Heterogeneous Turbid Media By Frequency- Domain Diffusing-Photon Tomography,” Opt. Lett. 20, 426–428 (1995).
[Crossref]

C.P. Gonatas, M. Ishii, J.S. Leigh, and J.C. Schotland, “Optical Diffusion Imaging Using a Direct Inversion Method,” Phys. Rev. E 52, 4361–4365 (1995).
[Crossref]

R.L. Barbour, H.L. Graber, J.W. Chang, S.L.S. Barbour, P.C. Koo, and R. Aronson, “MRI-guided optical tomography: Prospects and computation for a new imaging method,” IEEE Compu. Sc. & Engg. 2, 63–77 (1995).
[Crossref]

B.W. Pogue, M.S. Patterson, H. Jiang, and K.D. Paulsen, “Initial Assessment of a Simple System For Frequency-Domain Diffuse Optical Tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[Crossref] [PubMed]

1994 (2)

R.C. Haskell, L.O. Svaasand, T.T. Tsay, T.C. Feng, and M.S. McAdams, “Boundary-Conditions For the Diffusion Equation in Radiative- Transfer,” J. Opt. Soc. Am. A - Optics Image Science and Vision 11, 2727–2741 (1994).
[Crossref]

S.A. Eccles, W.J. Court, G.A. Box, C.J. Dean, and R.G. Melton, “Regression of Established Breast-Carcinoma Xenografts with Antibody-Directed Enzyme Prodrug Therapy against C-Erbb2 P185,” Cancer Res. 54, 5171–5177 (1994).
[PubMed]

1993 (1)

1989 (1)

Achilefu, S.

J.E. Bugaj, S. Achilefu, R.B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[Crossref] [PubMed]

S. Achilefu, R.B. Dorshow, J.E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[Crossref] [PubMed]

S. Achilefu and R.B. Dorshow, “Dynamic and Continuous Monitoring of Renal and Hepatic Functions with Exogenous Markers,” Topics in Current Chemistry. Springer-Verlag: Berlin Heidelberg (2002).

Andronica, R.

Arif, I.

Aronson, R.

R.L. Barbour, H.L. Graber, J.W. Chang, S.L.S. Barbour, P.C. Koo, and R. Aronson, “MRI-guided optical tomography: Prospects and computation for a new imaging method,” IEEE Compu. Sc. & Engg. 2, 63–77 (1995).
[Crossref]

Barbour, R.L.

Barbour, S.L.S.

Bevilacqua, F.

Bluestone, A.

Boas, D.

Boas, D.A.

Bogdanov, A.

V. Ntziachristos, E.A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. National Academy of Sciences of the United States of America 101, 12294–12299 (2004).
[Crossref]

Box, G.A.

S.A. Eccles, W.J. Court, G.A. Box, C.J. Dean, and R.G. Melton, “Regression of Established Breast-Carcinoma Xenografts with Antibody-Directed Enzyme Prodrug Therapy against C-Erbb2 P185,” Cancer Res. 54, 5171–5177 (1994).
[PubMed]

Bredow, S.

C. Bremer, S. Bredow, U. Mahmood, R. Weissleder, and C.H. Tung, “Optical imaging of matrix metalloproteinase-2 activity in tumors: Feasibility study in a mouse model,” Radiol. 221, 523–529 (2001).
[Crossref]

Bremer, C.

V. Ntziachristos, C.H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[Crossref] [PubMed]

V. Ntziachristos, C. Bremer, C. Tung, and R. Weissleder, “Imaging cathepsin B up-regulation in HT-1080 tumor models using fluorescence-mediated molecular tomography (FMT),” Acad. Radiol. 9, 323–325 (2002).
[Crossref]

C. Bremer, S. Bredow, U. Mahmood, R. Weissleder, and C.H. Tung, “Optical imaging of matrix metalloproteinase-2 activity in tumors: Feasibility study in a mouse model,” Radiol. 221, 523–529 (2001).
[Crossref]

Brooksby, B.

Bugaj, J.E.

J.E. Bugaj, S. Achilefu, R.B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[Crossref] [PubMed]

S. Achilefu, R.B. Dorshow, J.E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[Crossref] [PubMed]

Chance, B.

J.P. Culver, R. Choe, M.J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A.G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[Crossref] [PubMed]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A.G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30, 1039–1047 (2003).
[Crossref] [PubMed]

V. Ntziachristos, A.G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. National Academy of Sciences of the United States of America 97, 2767–2772 (2000).
[Crossref]

T. Durduran, J.P. Culver, M.J. Holboke, X.D. Li, L. Zubkov, B. Chance, D.N. Pattanayak, and A.G. Yodh, “Algorithms for 3D localization and imaging using near-field diffraction tomography with diffuse light,” Opt. Exp. 4, 247–262 (1999).
[Crossref]

X.D. Li, T. Durduran, A.G. Yodh, B. Chance, and D.N. Pattanayak, “Diffraction tomography for biochemical imaging with diffuse- photon density waves,” Optics Letters 22, 573–575 (1997).
[Crossref] [PubMed]

M.A. Oleary, D.A. Boas, X.D. Li, B. Chance, and A.G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
[Crossref]

M.A. Oleary, D.A. Boas, B. Chance, and A.G. Yodh, “Experimental Images of Heterogeneous Turbid Media By Frequency- Domain Diffusing-Photon Tomography,” Opt. Lett. 20, 426–428 (1995).
[Crossref]

M.S. Patterson, B. Chance, and B.C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[Crossref] [PubMed]

Chang, J.W.

R.L. Barbour, H.L. Graber, J.W. Chang, S.L.S. Barbour, P.C. Koo, and R. Aronson, “MRI-guided optical tomography: Prospects and computation for a new imaging method,” IEEE Compu. Sc. & Engg. 2, 63–77 (1995).
[Crossref]

Chen, B.

B.W. Pogue, S.L. Gibbs, B. Chen, and M. Savellano, “Fluorescence imaging in vivo: Raster scanned point-source imaging provides more accurate quantification than broad beam geometries,” Tech. in Cancer Research & Treatment 3, 15–21 (2004).

Chen, Y.

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A.G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30, 1039–1047 (2003).
[Crossref] [PubMed]

Choe, R.

J.P. Culver, R. Choe, M.J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A.G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[Crossref] [PubMed]

Clark, N.

Court, W.J.

S.A. Eccles, W.J. Court, G.A. Box, C.J. Dean, and R.G. Melton, “Regression of Established Breast-Carcinoma Xenografts with Antibody-Directed Enzyme Prodrug Therapy against C-Erbb2 P185,” Cancer Res. 54, 5171–5177 (1994).
[PubMed]

Cuccia, D.J.

Culver, J.P.

J.P. Culver, R. Choe, M.J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A.G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[Crossref] [PubMed]

T. Durduran, J.P. Culver, M.J. Holboke, X.D. Li, L. Zubkov, B. Chance, D.N. Pattanayak, and A.G. Yodh, “Algorithms for 3D localization and imaging using near-field diffraction tomography with diffuse light,” Opt. Exp. 4, 247–262 (1999).
[Crossref]

Dale, A.M.

Dean, C.J.

S.A. Eccles, W.J. Court, G.A. Box, C.J. Dean, and R.G. Melton, “Regression of Established Breast-Carcinoma Xenografts with Antibody-Directed Enzyme Prodrug Therapy against C-Erbb2 P185,” Cancer Res. 54, 5171–5177 (1994).
[PubMed]

Dehghani, H.

S. Srinivasan, B.W. Pogue, H. Dehghani, S.D. Jiang, X.M. Song, and K.D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161–1171 (2004).
[Crossref] [PubMed]

H. Dehghani, B.W. Pogue, S.D. Jiang, B. Brooksby, and K.D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128 (2003).
[Crossref] [PubMed]

Dorshow, R.B.

J.E. Bugaj, S. Achilefu, R.B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[Crossref] [PubMed]

S. Achilefu, R.B. Dorshow, J.E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[Crossref] [PubMed]

S. Achilefu and R.B. Dorshow, “Dynamic and Continuous Monitoring of Renal and Hepatic Functions with Exogenous Markers,” Topics in Current Chemistry. Springer-Verlag: Berlin Heidelberg (2002).

Dunn, A.

Dunn, A.K.

Durduran, T.

J.P. Culver, R. Choe, M.J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A.G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[Crossref] [PubMed]

T. Durduran, J.P. Culver, M.J. Holboke, X.D. Li, L. Zubkov, B. Chance, D.N. Pattanayak, and A.G. Yodh, “Algorithms for 3D localization and imaging using near-field diffraction tomography with diffuse light,” Opt. Exp. 4, 247–262 (1999).
[Crossref]

X.D. Li, T. Durduran, A.G. Yodh, B. Chance, and D.N. Pattanayak, “Diffraction tomography for biochemical imaging with diffuse- photon density waves,” Optics Letters 22, 573–575 (1997).
[Crossref] [PubMed]

Durkin, A.J.

Eccles, S.A.

S.A. Eccles, W.J. Court, G.A. Box, C.J. Dean, and R.G. Melton, “Regression of Established Breast-Carcinoma Xenografts with Antibody-Directed Enzyme Prodrug Therapy against C-Erbb2 P185,” Cancer Res. 54, 5171–5177 (1994).
[PubMed]

Eppstein, M.J.

A. Godavarty, C. Zhang, M.J. Eppstein, and E.M. Sevick-Muraca, “Fluorescence-enhanced optical imaging of large phantoms using single and simultaneous dual point illumination geometries,” Med. Phys. 31, 183–190 (2004).
[Crossref] [PubMed]

A. Godavarty, M.J. Eppstein, C.Y. Zhang, S. Theru, A.B. Thompson, M. Gurfinkel, and E.M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[Crossref] [PubMed]

Fender, J.S.

Feng, T.C.

R.C. Haskell, L.O. Svaasand, T.T. Tsay, T.C. Feng, and M.S. McAdams, “Boundary-Conditions For the Diffusion Equation in Radiative- Transfer,” J. Opt. Soc. Am. A - Optics Image Science and Vision 11, 2727–2741 (1994).
[Crossref]

Gibbs, S.L.

B.W. Pogue, S.L. Gibbs, B. Chen, and M. Savellano, “Fluorescence imaging in vivo: Raster scanned point-source imaging provides more accurate quantification than broad beam geometries,” Tech. in Cancer Research & Treatment 3, 15–21 (2004).

Godavarty, A.

A. Godavarty, C. Zhang, M.J. Eppstein, and E.M. Sevick-Muraca, “Fluorescence-enhanced optical imaging of large phantoms using single and simultaneous dual point illumination geometries,” Med. Phys. 31, 183–190 (2004).
[Crossref] [PubMed]

A. Godavarty, M.J. Eppstein, C.Y. Zhang, S. Theru, A.B. Thompson, M. Gurfinkel, and E.M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[Crossref] [PubMed]

Gonatas, C.P.

C.P. Gonatas, M. Ishii, J.S. Leigh, and J.C. Schotland, “Optical Diffusion Imaging Using a Direct Inversion Method,” Phys. Rev. E 52, 4361–4365 (1995).
[Crossref]

Graber, H.L.

Graves, E.

V. Ntziachristos, E.A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. National Academy of Sciences of the United States of America 101, 12294–12299 (2004).
[Crossref]

Graves, E.E.

E.E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence molecular imaging of small animal tumor models,” Current Molecular Medicine 4, 419–430 (2004).
[Crossref] [PubMed]

E.E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).
[Crossref] [PubMed]

Gulsen, G.

Gurfinkel, M.

A. Godavarty, M.J. Eppstein, C.Y. Zhang, S. Theru, A.B. Thompson, M. Gurfinkel, and E.M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[Crossref] [PubMed]

M. Gurfinkel, A.B. Thompson, W. Ralston, T.L. Troy, A.L. Moore, T.A. Moore, J.D. Gust, D. Tatman, J.S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R.H. Mayer, D.J. Hawrysz, and E.M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: A case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref] [PubMed]

Gust, J.D.

M. Gurfinkel, A.B. Thompson, W. Ralston, T.L. Troy, A.L. Moore, T.A. Moore, J.D. Gust, D. Tatman, J.S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R.H. Mayer, D.J. Hawrysz, and E.M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: A case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref] [PubMed]

Haskell, R.C.

R.C. Haskell, L.O. Svaasand, T.T. Tsay, T.C. Feng, and M.S. McAdams, “Boundary-Conditions For the Diffusion Equation in Radiative- Transfer,” J. Opt. Soc. Am. A - Optics Image Science and Vision 11, 2727–2741 (1994).
[Crossref]

Hawrysz, D.J.

M. Gurfinkel, A.B. Thompson, W. Ralston, T.L. Troy, A.L. Moore, T.A. Moore, J.D. Gust, D. Tatman, J.S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R.H. Mayer, D.J. Hawrysz, and E.M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: A case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref] [PubMed]

Hebden, J.C.

Hillman, E.M.C.

Hira, J.

Holboke, M.J.

J.P. Culver, R. Choe, M.J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A.G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[Crossref] [PubMed]

T. Durduran, J.P. Culver, M.J. Holboke, X.D. Li, L. Zubkov, B. Chance, D.N. Pattanayak, and A.G. Yodh, “Algorithms for 3D localization and imaging using near-field diffraction tomography with diffuse light,” Opt. Exp. 4, 247–262 (1999).
[Crossref]

Intes, X.

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A.G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30, 1039–1047 (2003).
[Crossref] [PubMed]

Ishii, M.

C.P. Gonatas, M. Ishii, J.S. Leigh, and J.C. Schotland, “Optical Diffusion Imaging Using a Direct Inversion Method,” Phys. Rev. E 52, 4361–4365 (1995).
[Crossref]

Jiang, H.

B.W. Pogue, M.S. Patterson, H. Jiang, and K.D. Paulsen, “Initial Assessment of a Simple System For Frequency-Domain Diffuse Optical Tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[Crossref] [PubMed]

Jiang, S.D.

S. Srinivasan, B.W. Pogue, H. Dehghani, S.D. Jiang, X.M. Song, and K.D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161–1171 (2004).
[Crossref] [PubMed]

H. Dehghani, B.W. Pogue, S.D. Jiang, B. Brooksby, and K.D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128 (2003).
[Crossref] [PubMed]

Josephson, L.

V. Ntziachristos, E.A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. National Academy of Sciences of the United States of America 101, 12294–12299 (2004).
[Crossref]

Kak, A.C.

A.C. Kak and M. Slaney, “Principles of Computerized Tomographic Imaging,” New York: IEEE Press (1988).

Koo, P.C.

R.L. Barbour, H.L. Graber, J.W. Chang, S.L.S. Barbour, P.C. Koo, and R. Aronson, “MRI-guided optical tomography: Prospects and computation for a new imaging method,” IEEE Compu. Sc. & Engg. 2, 63–77 (1995).
[Crossref]

Leigh, J.S.

C.P. Gonatas, M. Ishii, J.S. Leigh, and J.C. Schotland, “Optical Diffusion Imaging Using a Direct Inversion Method,” Phys. Rev. E 52, 4361–4365 (1995).
[Crossref]

Li, X.D.

T. Durduran, J.P. Culver, M.J. Holboke, X.D. Li, L. Zubkov, B. Chance, D.N. Pattanayak, and A.G. Yodh, “Algorithms for 3D localization and imaging using near-field diffraction tomography with diffuse light,” Opt. Exp. 4, 247–262 (1999).
[Crossref]

X.D. Li, T. Durduran, A.G. Yodh, B. Chance, and D.N. Pattanayak, “Diffraction tomography for biochemical imaging with diffuse- photon density waves,” Optics Letters 22, 573–575 (1997).
[Crossref] [PubMed]

M.A. Oleary, D.A. Boas, X.D. Li, B. Chance, and A.G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
[Crossref]

Luo, H.B.

Mahmood, U.

C. Bremer, S. Bredow, U. Mahmood, R. Weissleder, and C.H. Tung, “Optical imaging of matrix metalloproteinase-2 activity in tumors: Feasibility study in a mouse model,” Radiol. 221, 523–529 (2001).
[Crossref]

Markel, V.A.

V.A. Markel and J.C. Schotland, “Inverse problem in optical diffusion tomography. I. Fourier- Laplace inversion formulas,” J. Opt. Soc. Am. A - Optics Image Science and Vision 18, 1336–1347 (2001).
[Crossref]

Matson, C.L.

Mayer, R.H.

M. Gurfinkel, A.B. Thompson, W. Ralston, T.L. Troy, A.L. Moore, T.A. Moore, J.D. Gust, D. Tatman, J.S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R.H. Mayer, D.J. Hawrysz, and E.M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: A case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref] [PubMed]

McAdams, M.S.

R.C. Haskell, L.O. Svaasand, T.T. Tsay, T.C. Feng, and M.S. McAdams, “Boundary-Conditions For the Diffusion Equation in Radiative- Transfer,” J. Opt. Soc. Am. A - Optics Image Science and Vision 11, 2727–2741 (1994).
[Crossref]

McBride, T.O.

B.W. Pogue, C. Willscher, T.O. McBride, U.L. Osterberg, and K.D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[Crossref]

McMackin, L.

Melton, R.G.

S.A. Eccles, W.J. Court, G.A. Box, C.J. Dean, and R.G. Melton, “Regression of Established Breast-Carcinoma Xenografts with Antibody-Directed Enzyme Prodrug Therapy against C-Erbb2 P185,” Cancer Res. 54, 5171–5177 (1994).
[PubMed]

Merritt, S.

Moore, A.L.

M. Gurfinkel, A.B. Thompson, W. Ralston, T.L. Troy, A.L. Moore, T.A. Moore, J.D. Gust, D. Tatman, J.S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R.H. Mayer, D.J. Hawrysz, and E.M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: A case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref] [PubMed]

Moore, T.A.

M. Gurfinkel, A.B. Thompson, W. Ralston, T.L. Troy, A.L. Moore, T.A. Moore, J.D. Gust, D. Tatman, J.S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R.H. Mayer, D.J. Hawrysz, and E.M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: A case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref] [PubMed]

Muggenburg, B.

M. Gurfinkel, A.B. Thompson, W. Ralston, T.L. Troy, A.L. Moore, T.A. Moore, J.D. Gust, D. Tatman, J.S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R.H. Mayer, D.J. Hawrysz, and E.M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: A case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref] [PubMed]

Nalcioglu, O.

Nikula, K.

M. Gurfinkel, A.B. Thompson, W. Ralston, T.L. Troy, A.L. Moore, T.A. Moore, J.D. Gust, D. Tatman, J.S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R.H. Mayer, D.J. Hawrysz, and E.M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: A case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref] [PubMed]

Nioka, S.

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A.G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30, 1039–1047 (2003).
[Crossref] [PubMed]

Ntziachristos, V.

R.B. Schulz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23, 492–500 (2004).
[Crossref] [PubMed]

E.E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence molecular imaging of small animal tumor models,” Current Molecular Medicine 4, 419–430 (2004).
[Crossref] [PubMed]

V. Ntziachristos, E.A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. National Academy of Sciences of the United States of America 101, 12294–12299 (2004).
[Crossref]

E.E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).
[Crossref] [PubMed]

J.P. Culver, R. Choe, M.J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A.G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[Crossref] [PubMed]

V. Ntziachristos, C. Bremer, C. Tung, and R. Weissleder, “Imaging cathepsin B up-regulation in HT-1080 tumor models using fluorescence-mediated molecular tomography (FMT),” Acad. Radiol. 9, 323–325 (2002).
[Crossref]

V. Ntziachristos, C.H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[Crossref] [PubMed]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893–895 (2001).
[Crossref]

V. Ntziachristos and R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys. 29, 803–809 (2000).
[Crossref]

V. Ntziachristos, A.G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. National Academy of Sciences of the United States of America 97, 2767–2772 (2000).
[Crossref]

Oleary, M.A.

Osterberg, U.L.

B.W. Pogue, C. Willscher, T.O. McBride, U.L. Osterberg, and K.D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[Crossref]

Pandey, R.

M. Gurfinkel, A.B. Thompson, W. Ralston, T.L. Troy, A.L. Moore, T.A. Moore, J.D. Gust, D. Tatman, J.S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R.H. Mayer, D.J. Hawrysz, and E.M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: A case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref] [PubMed]

Pattanayak, D.N.

T. Durduran, J.P. Culver, M.J. Holboke, X.D. Li, L. Zubkov, B. Chance, D.N. Pattanayak, and A.G. Yodh, “Algorithms for 3D localization and imaging using near-field diffraction tomography with diffuse light,” Opt. Exp. 4, 247–262 (1999).
[Crossref]

X.D. Li, T. Durduran, A.G. Yodh, B. Chance, and D.N. Pattanayak, “Diffraction tomography for biochemical imaging with diffuse- photon density waves,” Optics Letters 22, 573–575 (1997).
[Crossref] [PubMed]

Patterson, M.S.

B.W. Pogue, M.S. Patterson, H. Jiang, and K.D. Paulsen, “Initial Assessment of a Simple System For Frequency-Domain Diffuse Optical Tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[Crossref] [PubMed]

M.S. Patterson, B. Chance, and B.C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[Crossref] [PubMed]

Paulsen, K.D.

S. Srinivasan, B.W. Pogue, H. Dehghani, S.D. Jiang, X.M. Song, and K.D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161–1171 (2004).
[Crossref] [PubMed]

H. Dehghani, B.W. Pogue, S.D. Jiang, B. Brooksby, and K.D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128 (2003).
[Crossref] [PubMed]

B.W. Pogue, C. Willscher, T.O. McBride, U.L. Osterberg, and K.D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[Crossref]

B.W. Pogue, M.S. Patterson, H. Jiang, and K.D. Paulsen, “Initial Assessment of a Simple System For Frequency-Domain Diffuse Optical Tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[Crossref] [PubMed]

Pei, Y.L.

Pogue, B.W.

S. Srinivasan, B.W. Pogue, H. Dehghani, S.D. Jiang, X.M. Song, and K.D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161–1171 (2004).
[Crossref] [PubMed]

B.W. Pogue, S.L. Gibbs, B. Chen, and M. Savellano, “Fluorescence imaging in vivo: Raster scanned point-source imaging provides more accurate quantification than broad beam geometries,” Tech. in Cancer Research & Treatment 3, 15–21 (2004).

H. Dehghani, B.W. Pogue, S.D. Jiang, B. Brooksby, and K.D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117–3128 (2003).
[Crossref] [PubMed]

B.W. Pogue, C. Willscher, T.O. McBride, U.L. Osterberg, and K.D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[Crossref]

B.W. Pogue, M.S. Patterson, H. Jiang, and K.D. Paulsen, “Initial Assessment of a Simple System For Frequency-Domain Diffuse Optical Tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[Crossref] [PubMed]

Rajagopalan, R.

J.E. Bugaj, S. Achilefu, R.B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[Crossref] [PubMed]

S. Achilefu, R.B. Dorshow, J.E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[Crossref] [PubMed]

Ralston, W.

M. Gurfinkel, A.B. Thompson, W. Ralston, T.L. Troy, A.L. Moore, T.A. Moore, J.D. Gust, D. Tatman, J.S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R.H. Mayer, D.J. Hawrysz, and E.M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: A case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref] [PubMed]

Ramirez, N.

Reynolds, J.S.

M. Gurfinkel, A.B. Thompson, W. Ralston, T.L. Troy, A.L. Moore, T.A. Moore, J.D. Gust, D. Tatman, J.S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R.H. Mayer, D.J. Hawrysz, and E.M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: A case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref] [PubMed]

Ripoll, J.

R.B. Schulz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23, 492–500 (2004).
[Crossref] [PubMed]

V. Ntziachristos, E.A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. National Academy of Sciences of the United States of America 101, 12294–12299 (2004).
[Crossref]

E.E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).
[Crossref] [PubMed]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A.G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30, 1039–1047 (2003).
[Crossref] [PubMed]

Savellano, M.

B.W. Pogue, S.L. Gibbs, B. Chen, and M. Savellano, “Fluorescence imaging in vivo: Raster scanned point-source imaging provides more accurate quantification than broad beam geometries,” Tech. in Cancer Research & Treatment 3, 15–21 (2004).

Schellenberger, E.A.

V. Ntziachristos, E.A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. National Academy of Sciences of the United States of America 101, 12294–12299 (2004).
[Crossref]

Schmitz, C.H.

Schnall, M.

V. Ntziachristos, A.G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. National Academy of Sciences of the United States of America 97, 2767–2772 (2000).
[Crossref]

Schotland, J.C.

V.A. Markel and J.C. Schotland, “Inverse problem in optical diffusion tomography. I. Fourier- Laplace inversion formulas,” J. Opt. Soc. Am. A - Optics Image Science and Vision 18, 1336–1347 (2001).
[Crossref]

J.C. Schotland, “Continuous-wave diffusion imaging,” J. Opt. Soc. Am. A - Optics Image Science and Vision 14, 275–279 (1997).
[Crossref]

C.P. Gonatas, M. Ishii, J.S. Leigh, and J.C. Schotland, “Optical Diffusion Imaging Using a Direct Inversion Method,” Phys. Rev. E 52, 4361–4365 (1995).
[Crossref]

Schulz, R.B.

R.B. Schulz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23, 492–500 (2004).
[Crossref] [PubMed]

Sevick-Muraca, E.M.

A. Godavarty, C. Zhang, M.J. Eppstein, and E.M. Sevick-Muraca, “Fluorescence-enhanced optical imaging of large phantoms using single and simultaneous dual point illumination geometries,” Med. Phys. 31, 183–190 (2004).
[Crossref] [PubMed]

A. Godavarty, M.J. Eppstein, C.Y. Zhang, S. Theru, A.B. Thompson, M. Gurfinkel, and E.M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[Crossref] [PubMed]

M. Gurfinkel, A.B. Thompson, W. Ralston, T.L. Troy, A.L. Moore, T.A. Moore, J.D. Gust, D. Tatman, J.S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R.H. Mayer, D.J. Hawrysz, and E.M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: A case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref] [PubMed]

Slaney, M.

A.C. Kak and M. Slaney, “Principles of Computerized Tomographic Imaging,” New York: IEEE Press (1988).

Slemp, A.

J.P. Culver, R. Choe, M.J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A.G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[Crossref] [PubMed]

Soller, I.

Song, X.M.

S. Srinivasan, B.W. Pogue, H. Dehghani, S.D. Jiang, X.M. Song, and K.D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161–1171 (2004).
[Crossref] [PubMed]

Srinivasan, S.

S. Srinivasan, B.W. Pogue, H. Dehghani, S.D. Jiang, X.M. Song, and K.D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161–1171 (2004).
[Crossref] [PubMed]

Svaasand, L.O.

R.C. Haskell, L.O. Svaasand, T.T. Tsay, T.C. Feng, and M.S. McAdams, “Boundary-Conditions For the Diffusion Equation in Radiative- Transfer,” J. Opt. Soc. Am. A - Optics Image Science and Vision 11, 2727–2741 (1994).
[Crossref]

Tatman, D.

M. Gurfinkel, A.B. Thompson, W. Ralston, T.L. Troy, A.L. Moore, T.A. Moore, J.D. Gust, D. Tatman, J.S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R.H. Mayer, D.J. Hawrysz, and E.M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: A case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref] [PubMed]

Theru, S.

A. Godavarty, M.J. Eppstein, C.Y. Zhang, S. Theru, A.B. Thompson, M. Gurfinkel, and E.M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[Crossref] [PubMed]

Thompson, A.B.

A. Godavarty, M.J. Eppstein, C.Y. Zhang, S. Theru, A.B. Thompson, M. Gurfinkel, and E.M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[Crossref] [PubMed]

M. Gurfinkel, A.B. Thompson, W. Ralston, T.L. Troy, A.L. Moore, T.A. Moore, J.D. Gust, D. Tatman, J.S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R.H. Mayer, D.J. Hawrysz, and E.M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: A case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref] [PubMed]

Tromberg, B.J.

Troy, T.L.

M. Gurfinkel, A.B. Thompson, W. Ralston, T.L. Troy, A.L. Moore, T.A. Moore, J.D. Gust, D. Tatman, J.S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R.H. Mayer, D.J. Hawrysz, and E.M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: A case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref] [PubMed]

Tsay, T.T.

R.C. Haskell, L.O. Svaasand, T.T. Tsay, T.C. Feng, and M.S. McAdams, “Boundary-Conditions For the Diffusion Equation in Radiative- Transfer,” J. Opt. Soc. Am. A - Optics Image Science and Vision 11, 2727–2741 (1994).
[Crossref]

Tung, C.

V. Ntziachristos, C. Bremer, C. Tung, and R. Weissleder, “Imaging cathepsin B up-regulation in HT-1080 tumor models using fluorescence-mediated molecular tomography (FMT),” Acad. Radiol. 9, 323–325 (2002).
[Crossref]

Tung, C.H.

V. Ntziachristos, C.H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[Crossref] [PubMed]

C. Bremer, S. Bredow, U. Mahmood, R. Weissleder, and C.H. Tung, “Optical imaging of matrix metalloproteinase-2 activity in tumors: Feasibility study in a mouse model,” Radiol. 221, 523–529 (2001).
[Crossref]

Wang, J.

Weissleder, R.

E.E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence molecular imaging of small animal tumor models,” Current Molecular Medicine 4, 419–430 (2004).
[Crossref] [PubMed]

V. Ntziachristos, E.A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. National Academy of Sciences of the United States of America 101, 12294–12299 (2004).
[Crossref]

E.E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).
[Crossref] [PubMed]

V. Ntziachristos, C. Bremer, C. Tung, and R. Weissleder, “Imaging cathepsin B up-regulation in HT-1080 tumor models using fluorescence-mediated molecular tomography (FMT),” Acad. Radiol. 9, 323–325 (2002).
[Crossref]

V. Ntziachristos, C.H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[Crossref] [PubMed]

C. Bremer, S. Bredow, U. Mahmood, R. Weissleder, and C.H. Tung, “Optical imaging of matrix metalloproteinase-2 activity in tumors: Feasibility study in a mouse model,” Radiol. 221, 523–529 (2001).
[Crossref]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893–895 (2001).
[Crossref]

V. Ntziachristos and R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys. 29, 803–809 (2000).
[Crossref]

Willscher, C.

B.W. Pogue, C. Willscher, T.O. McBride, U.L. Osterberg, and K.D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[Crossref]

Wilson, B.C.

Wong, K.S.

Yessayan, D.

V. Ntziachristos, E.A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. National Academy of Sciences of the United States of America 101, 12294–12299 (2004).
[Crossref]

Yodh, A.G.

J.P. Culver, R. Choe, M.J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A.G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[Crossref] [PubMed]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A.G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30, 1039–1047 (2003).
[Crossref] [PubMed]

V. Ntziachristos, A.G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. National Academy of Sciences of the United States of America 97, 2767–2772 (2000).
[Crossref]

T. Durduran, J.P. Culver, M.J. Holboke, X.D. Li, L. Zubkov, B. Chance, D.N. Pattanayak, and A.G. Yodh, “Algorithms for 3D localization and imaging using near-field diffraction tomography with diffuse light,” Opt. Exp. 4, 247–262 (1999).
[Crossref]

X.D. Li, T. Durduran, A.G. Yodh, B. Chance, and D.N. Pattanayak, “Diffraction tomography for biochemical imaging with diffuse- photon density waves,” Optics Letters 22, 573–575 (1997).
[Crossref] [PubMed]

M.A. Oleary, D.A. Boas, X.D. Li, B. Chance, and A.G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
[Crossref]

M.A. Oleary, D.A. Boas, B. Chance, and A.G. Yodh, “Experimental Images of Heterogeneous Turbid Media By Frequency- Domain Diffusing-Photon Tomography,” Opt. Lett. 20, 426–428 (1995).
[Crossref]

Yu, H.

Zhang, C.

A. Godavarty, C. Zhang, M.J. Eppstein, and E.M. Sevick-Muraca, “Fluorescence-enhanced optical imaging of large phantoms using single and simultaneous dual point illumination geometries,” Med. Phys. 31, 183–190 (2004).
[Crossref] [PubMed]

Zhang, C.Y.

A. Godavarty, M.J. Eppstein, C.Y. Zhang, S. Theru, A.B. Thompson, M. Gurfinkel, and E.M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[Crossref] [PubMed]

Zhong, S.

Zubkov, L.

J.P. Culver, R. Choe, M.J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A.G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[Crossref] [PubMed]

T. Durduran, J.P. Culver, M.J. Holboke, X.D. Li, L. Zubkov, B. Chance, D.N. Pattanayak, and A.G. Yodh, “Algorithms for 3D localization and imaging using near-field diffraction tomography with diffuse light,” Opt. Exp. 4, 247–262 (1999).
[Crossref]

Acad. Radiol. (1)

V. Ntziachristos, C. Bremer, C. Tung, and R. Weissleder, “Imaging cathepsin B up-regulation in HT-1080 tumor models using fluorescence-mediated molecular tomography (FMT),” Acad. Radiol. 9, 323–325 (2002).
[Crossref]

Appl. Opt. (6)

Cancer Res. (1)

S.A. Eccles, W.J. Court, G.A. Box, C.J. Dean, and R.G. Melton, “Regression of Established Breast-Carcinoma Xenografts with Antibody-Directed Enzyme Prodrug Therapy against C-Erbb2 P185,” Cancer Res. 54, 5171–5177 (1994).
[PubMed]

Current Molecular Medicine (1)

E.E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence molecular imaging of small animal tumor models,” Current Molecular Medicine 4, 419–430 (2004).
[Crossref] [PubMed]

IEEE Compu. Sc. & Engg. (1)

R.L. Barbour, H.L. Graber, J.W. Chang, S.L.S. Barbour, P.C. Koo, and R. Aronson, “MRI-guided optical tomography: Prospects and computation for a new imaging method,” IEEE Compu. Sc. & Engg. 2, 63–77 (1995).
[Crossref]

IEEE Trans. Med. Imaging (1)

R.B. Schulz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23, 492–500 (2004).
[Crossref] [PubMed]

Invest. Radiol. (1)

S. Achilefu, R.B. Dorshow, J.E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

J.E. Bugaj, S. Achilefu, R.B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[Crossref] [PubMed]

S. Srinivasan, B.W. Pogue, H. Dehghani, S.D. Jiang, X.M. Song, and K.D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161–1171 (2004).
[Crossref] [PubMed]

J. Opt. Soc. Am. A - Optics Image Science and Vision (3)

R.C. Haskell, L.O. Svaasand, T.T. Tsay, T.C. Feng, and M.S. McAdams, “Boundary-Conditions For the Diffusion Equation in Radiative- Transfer,” J. Opt. Soc. Am. A - Optics Image Science and Vision 11, 2727–2741 (1994).
[Crossref]

J.C. Schotland, “Continuous-wave diffusion imaging,” J. Opt. Soc. Am. A - Optics Image Science and Vision 14, 275–279 (1997).
[Crossref]

V.A. Markel and J.C. Schotland, “Inverse problem in optical diffusion tomography. I. Fourier- Laplace inversion formulas,” J. Opt. Soc. Am. A - Optics Image Science and Vision 18, 1336–1347 (2001).
[Crossref]

Med. Phys. (6)

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A.G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30, 1039–1047 (2003).
[Crossref] [PubMed]

J.P. Culver, R. Choe, M.J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A.G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[Crossref] [PubMed]

A. Godavarty, C. Zhang, M.J. Eppstein, and E.M. Sevick-Muraca, “Fluorescence-enhanced optical imaging of large phantoms using single and simultaneous dual point illumination geometries,” Med. Phys. 31, 183–190 (2004).
[Crossref] [PubMed]

E.E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).
[Crossref] [PubMed]

V. Ntziachristos and R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys. 29, 803–809 (2000).
[Crossref]

B.W. Pogue, C. Willscher, T.O. McBride, U.L. Osterberg, and K.D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[Crossref]

Nat. Med. (1)

V. Ntziachristos, C.H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[Crossref] [PubMed]

Opt. Exp. (1)

T. Durduran, J.P. Culver, M.J. Holboke, X.D. Li, L. Zubkov, B. Chance, D.N. Pattanayak, and A.G. Yodh, “Algorithms for 3D localization and imaging using near-field diffraction tomography with diffuse light,” Opt. Exp. 4, 247–262 (1999).
[Crossref]

Opt. Lett. (5)

Optics Letters (1)

X.D. Li, T. Durduran, A.G. Yodh, B. Chance, and D.N. Pattanayak, “Diffraction tomography for biochemical imaging with diffuse- photon density waves,” Optics Letters 22, 573–575 (1997).
[Crossref] [PubMed]

Photochem. Photobiol. (1)

M. Gurfinkel, A.B. Thompson, W. Ralston, T.L. Troy, A.L. Moore, T.A. Moore, J.D. Gust, D. Tatman, J.S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R.H. Mayer, D.J. Hawrysz, and E.M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: A case study,” Photochem. Photobiol. 72, 94–102 (2000).
[Crossref] [PubMed]

Phys. Med. Biol. (2)

B.W. Pogue, M.S. Patterson, H. Jiang, and K.D. Paulsen, “Initial Assessment of a Simple System For Frequency-Domain Diffuse Optical Tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[Crossref] [PubMed]

A. Godavarty, M.J. Eppstein, C.Y. Zhang, S. Theru, A.B. Thompson, M. Gurfinkel, and E.M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol. 48, 1701–1720 (2003).
[Crossref] [PubMed]

Phys. Rev. E (1)

C.P. Gonatas, M. Ishii, J.S. Leigh, and J.C. Schotland, “Optical Diffusion Imaging Using a Direct Inversion Method,” Phys. Rev. E 52, 4361–4365 (1995).
[Crossref]

Proc. National Academy of Sciences of the United States of America (2)

V. Ntziachristos, E.A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. National Academy of Sciences of the United States of America 101, 12294–12299 (2004).
[Crossref]

V. Ntziachristos, A.G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. National Academy of Sciences of the United States of America 97, 2767–2772 (2000).
[Crossref]

Radiol. (1)

C. Bremer, S. Bredow, U. Mahmood, R. Weissleder, and C.H. Tung, “Optical imaging of matrix metalloproteinase-2 activity in tumors: Feasibility study in a mouse model,” Radiol. 221, 523–529 (2001).
[Crossref]

Tech. in Cancer Research & Treatment (1)

B.W. Pogue, S.L. Gibbs, B. Chen, and M. Savellano, “Fluorescence imaging in vivo: Raster scanned point-source imaging provides more accurate quantification than broad beam geometries,” Tech. in Cancer Research & Treatment 3, 15–21 (2004).

Other (2)

S. Achilefu and R.B. Dorshow, “Dynamic and Continuous Monitoring of Renal and Hepatic Functions with Exogenous Markers,” Topics in Current Chemistry. Springer-Verlag: Berlin Heidelberg (2002).

A.C. Kak and M. Slaney, “Principles of Computerized Tomographic Imaging,” New York: IEEE Press (1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Fast scanning fluorescence tomography system. The mouse subject is suspended and held in light compression between two movable windows (W1 and W2). Light from a laser diode at 785 nm (LD) is collimated and passes through a 95/5 beam splitter (BS). A reference Photodiode (PD) collects 5% of the beam. The main 95% beam passes through lens (L1) into a XY galvo scanning system (XYGal). The mirror pair scans the beam onto the illumination window (W1) of the imaging tank. Light emitted from W2 is detected by an EMCCD via a filter (F1) and lens system (L2).

Fig. 2.
Fig. 2.

Small animal fluorescence DOT system. The mouse subject is suspended between two movable windows. Light from a near infrared laser diode (785 nm) is scanned by a mirror pair on to the illumination window of the imaging tank. Fluorescing light emitted from the opposing window is detected by a lens coupled EMCCD Camera after passing through a filter that rejects the excitation light. CCD images are acquired for each source position. The full data set is then inverted to provide tomographic images of the concentration of exogenous fluorescing agents.

Fig. 3.
Fig. 3.

Calibration and Sensitivity. Known concentration -vs- raw reconstruction values for titrations of ICG in 3 mm tube phantoms. The data establish a calibration coefficient, and establish the region of linear response.

Fig. 4.
Fig. 4.

Resolution vs depth. a) Phantom measurement set-up. Depth of the phantom ztarget is measured from the detection plane. b) A xz plane slice at y=0 from a reconstructed volume of two 1.6mm diameter tubes (with 0.1 µM ICG). c) Full width half maximum (FWHM) Vs. Depth measured from the detection plane.

Fig. 5.
Fig. 5.

Biodistribution of indocynaine green (ICG) 3 min after retro orbital injection. 2D slices obtained from the 3D reconstruction are shown at various depths, ztarget, from the detection plane. The arrows indicate the site of ICG administration (Retro Orbital) ztarget=2.5, kidneys for ztarget=4.5, and the liver ztarget=10.5. Note the localization of ICG in the liver as compared to the kidneys 3 minutes after the probe delivery.

Fig. 6.
Fig. 6.

Volumes of interest used for head, shoulder, liver, and kidneys in the x-y plane.

Fig. 7.
Fig. 7.

Temporal kinetics of ICG. a) Time course of ICG distribution for retro-orbital injection in ROI’s for liver, kidney, head and shoulder. b) Time course comparison for ICG between IV and Retro Orbital delivery.

Fig. 8.
Fig. 8.

Representative slices from a 3D tomographic reconstruction of a nude mouse with a subcutaneous breast-specific human breast cancer xenograft MDA MD 361. a) a xy slice parallel to the detector plane at a depth of z=2.5mm and b) a xz slice extending from the source plane to detector plane at y=12mm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

y i = [ Φ ( r s ( i ) , r d ( i ) , λ emi ) θ f Φ o ( r s ( i ) , r d ( i ) , λ exc ) Φ o ( r s ( i ) , r d ( i ) , λ exc ) ]
A i , j = S o v h 3 D o G ( r s ( i ) , r j , λ exc ) G ( r j , r d ( i ) , λ emi ) G ( r s ( i ) , r d ( i ) , λ exc )
x j = N j

Metrics