Abstract

A novel sensitive approach to detect weak pressure variations has been applied to tunable diode laser-based photoacoustic spectroscopy. The sensing device consists of a miniature silicon cantilever, the deflection of which is detected with a compact Michelson-type interferometer. The photoacoustic system has been applied to the detection of carbon dioxide (CO2) at 1572 nm with a distributed feedback diode laser. A noise equivalent sensitivity of 2.8×10-10 cm-1WHz-1/2 was demonstrated. Potential improvements of the technique are discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

Errata

Toni Laurila, Heidi Cattaneo, Vesa Koskinen, Jyrki Kauppinen, and Rolf Hernberg, "Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection: erratum," Opt. Express 14, 4195-4195 (2006)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-14-9-4195

References

  • View by:
  • |

  1. M. Fehér, Y. Jiang, J.P. Maier, and A. Miklos, �??Optoacoustic trace-gas monitoring with near-infrared diode lasers,�?? Appl. Opt. 33, 1655-1658 (1994)
    [CrossRef] [PubMed]
  2. A. Schmohl, A. Miklós, and P. Hess, �??Detection of ammonia by photoacoustic spectroscopy with semiconductor lasers,�?? Appl. Opt. 41, 1819-1823 (2002)
    [CrossRef]
  3. M. E. Webber, M. Pushkarsky, C. Kumar, and N. Patel, �??Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers,�?? Appl. Opt. 42, 2119-2126 (2003)
    [CrossRef] [PubMed]
  4. A. Boschetti, D. Bassi, E. Iacob, S. Iannotta, L. Ricci, and M. Scotoni, �??Resonant photoacoustic simultaneous detection of methane and ethylene by means of a 1.63 μm diode laser,�?? Appl. Phys. B 74, 273-278 (2002)
    [CrossRef]
  5. M. Nägele, and M.W. Sigrist, �??Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace gas sensing,�?? Appl. Phys. B 70, 895-901 (2000)
    [CrossRef]
  6. F.G.C. Bijnen, J. Reuss, and F.J.M. Harren, �??Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection,�?? Rev. Sci. Instrum. 67, 2914-2923 (1996)
    [CrossRef]
  7. A. A. Kosterev, Yu. A. Bakhirkin, R. F. Curl, and F.K. Tittel, �??Quartz-enhanced photoacoustic spectroscopy,�?? Opt. Lett. 27, 1902-1904 (2002)
    [CrossRef]
  8. K. Wilcken, and J. Kauppinen, �??Optimization of a microphone for photoacoustic spectroscopy,�?? Appl. Spectrosc. 57, 1087-1092 (2003)
    [CrossRef] [PubMed]
  9. A. A. Kosterev, and F. K. Tittel, �??Ammonia detection by use of quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser,�?? Appl. Opt. 43, 6213-6217 (2004)
    [CrossRef] [PubMed]
  10. J. Kauppinen, K. Wilcken, I. Kauppinen, and V. Koskinen, �??High sensitivity in gas analysis with photoacoustic detection,�?? Microchem. J. 76, 151-159 (2004)
    [CrossRef]
  11. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Cjance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. V. Auwera, P. Varanasi, and K. Yoshino, �??The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,�?? J. Quant. Spectrosc. Radiat. Transfer 82, 5-44 (2003).
    [CrossRef]
  12. A. D. Wood, M. Camac, E. T. Gerry, �??Effects of 10.6-μ laser induced air chemistry on the atmospheric refractive index,�?? Appl. Opt. 10, 1877-1884 (1971)
    [CrossRef] [PubMed]
  13. A. Veres, Z. Bozóki, �?. Mohácsi, M. Szakáll, G. Szabo, �??External cavity diode laser based photoacoustic detection of CO2 at 1.43 μm: The effect of molecular relaxation,�?? Appl. Spectrosc. 57, 900-905 (2003)
    [CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

A. Boschetti, D. Bassi, E. Iacob, S. Iannotta, L. Ricci, and M. Scotoni, �??Resonant photoacoustic simultaneous detection of methane and ethylene by means of a 1.63 μm diode laser,�?? Appl. Phys. B 74, 273-278 (2002)
[CrossRef]

M. Nägele, and M.W. Sigrist, �??Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace gas sensing,�?? Appl. Phys. B 70, 895-901 (2000)
[CrossRef]

Appl. Spectrosc.

J. Quant. Spectrosc. Radiat. Transfer

L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Cjance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. V. Auwera, P. Varanasi, and K. Yoshino, �??The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,�?? J. Quant. Spectrosc. Radiat. Transfer 82, 5-44 (2003).
[CrossRef]

Microchem. J.

J. Kauppinen, K. Wilcken, I. Kauppinen, and V. Koskinen, �??High sensitivity in gas analysis with photoacoustic detection,�?? Microchem. J. 76, 151-159 (2004)
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

F.G.C. Bijnen, J. Reuss, and F.J.M. Harren, �??Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection,�?? Rev. Sci. Instrum. 67, 2914-2923 (1996)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup: SG, signal generator; ITD, current and temperature driver of the laser; DFBL, distributed feedback diode laser; FC, fiber collimator; W, window; C, micromechanical cantilever; MI, Michelson interferometer; PC, personal computer.

Fig. 2.
Fig. 2.

Dimensions of the cantilever pressure sensor and the interferometer setup.

Fig. 3.
Fig. 3.

Fourier transform of the cantilever’s interferometer signal for two different concentrations of CO2: 500 ppm (gray line) and 5000 ppm (black line).

Fig. 4.
Fig. 4.

Measured photoacoustic signal amplitude at 50, 100, 500, and 5000 ppm CO2 concentration. Inset: Measured dependence of the photoacoustic signal on the DFB laser power at constant 5000 ppm CO2 concentration.

Tables (1)

Tables Icon

Table 1. Characteristics of the measured CO2 R(18) rovibrational line and of the DFB laser used. The spectral parameters are taken from Ref. [11].

Metrics