Abstract

In this study we focus on understanding the system imaging mechanisms given rise to the unique characteristic of discretization in digital holography. Imaging analysis with respect to the system geometries is investigated and the corresponding requirements for reliable holographic imaging are specified. In addition, the imaging capacity of a digital holographic system is analyzed in terms of space-bandwidth product. The impacts due to the discrete features of the CCD sensor that are characterized by the amount of sensitive pixels and the pixel dimension are quantified. The analysis demonstrates the favorable properties of an in-line system arrangement in both the effective field of view and imaging resolution.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. U. Schnars and W. P. O. Juptner, "Digital recording and numerical reconstruction of holograms," Measurement Science and Technology 13, R85-R101 (2002).
    [CrossRef]
  2. J. L. Valin, E. Goncalves, F. Palacios and J. R. Perez, �??Methodology for analysis of displacement using digital holography,�?? Optics and Lasers in Engineering 43, 99-111 (2005).
    [CrossRef]
  3. I. Takahashi, T. Nomura, Y. Morimoto, S. Yoneyama and M. Fujigaki, �??Deformation measurement by digital holographic interferometry,�?? in Optomechatronic Systems IV, George K. Knopf, eds., Proc. SPIE 5264, 206-213 (2003).
  4. J. R. Perez, E. Goncalves, R. De Souza, F. Palacios, M. Muramatsu, J. L. Valin and R. Gesualdi, �??Two-source method in digital holographic contouring,�?? in 5th Iberoamerican Meeting on Optics and 8th Latin American Meeting on Optics, Lasers, and Their Applications, Aristides Marcano O. and Jose Luis Paz, eds., Proc. SPIE 5622, 1422-1427 (2004).
  5. P. Ferraro, G. Coppola, D. Alfieri, S. De Nicola, A. Finizio and G. Pierattini, �??Recent advancements in digital holographic microscopy and its applications,�?? in Optical Metrology in Production Engineering, Wolfgang Osten and Mitsuo Takeda, eds., Proc. SPIE 5457, 481-491 (2004).
  6. O. Matoba and B. Javidi, �??Optical security in data communication and display,�?? in Optical Information Systems, Bahram Javidi and Demetri Psaltis, eds., Proc. SPIE 5202, 68-75 (2003).
  7. E. Cuche, F. Bevilacqua and Ch. Depeursinge, �??Digital holography for quantitative phase-contrst imaging,�?? Opt. Lett. 24, 291-293 (1999).
    [CrossRef]
  8. J. W. Goodman, Introduction to Fourier Optics (The McGraw-Hill Companies, Inc. New York, 1996).
  9. Z. L. Yu and G. F. Jin, Optical information processing (Tsinghua University Press, Beijing, 1987).
  10. L. Xu, J. Miao and A. Asundi, "Properties of digital holography based on in-line configuration," Opt. Eng. 39, 3214-3219 (2000).
    [CrossRef]
  11. L. Xu, X. Peng, J. Miao and A. Asundi, "Studies of digital microscopic holography with applications to microstructure testing," Appl. Opt. 40, 5046-5051 (2001).
    [CrossRef]
  12. L. Xu, X. Peng, A. Asundi, and J. Miao, "Digital microholointerferometer: development and validation," Opt. Eng. 42, 2218-2224 (2003).
    [CrossRef]

Appl. Opt.

Measurement Science and Technology

U. Schnars and W. P. O. Juptner, "Digital recording and numerical reconstruction of holograms," Measurement Science and Technology 13, R85-R101 (2002).
[CrossRef]

Opt. Eng.

L. Xu, X. Peng, A. Asundi, and J. Miao, "Digital microholointerferometer: development and validation," Opt. Eng. 42, 2218-2224 (2003).
[CrossRef]

L. Xu, J. Miao and A. Asundi, "Properties of digital holography based on in-line configuration," Opt. Eng. 39, 3214-3219 (2000).
[CrossRef]

Opt. Lett.

Optics and Lasers in Engineering

J. L. Valin, E. Goncalves, F. Palacios and J. R. Perez, �??Methodology for analysis of displacement using digital holography,�?? Optics and Lasers in Engineering 43, 99-111 (2005).
[CrossRef]

Proc. SPIE

I. Takahashi, T. Nomura, Y. Morimoto, S. Yoneyama and M. Fujigaki, �??Deformation measurement by digital holographic interferometry,�?? in Optomechatronic Systems IV, George K. Knopf, eds., Proc. SPIE 5264, 206-213 (2003).

J. R. Perez, E. Goncalves, R. De Souza, F. Palacios, M. Muramatsu, J. L. Valin and R. Gesualdi, �??Two-source method in digital holographic contouring,�?? in 5th Iberoamerican Meeting on Optics and 8th Latin American Meeting on Optics, Lasers, and Their Applications, Aristides Marcano O. and Jose Luis Paz, eds., Proc. SPIE 5622, 1422-1427 (2004).

P. Ferraro, G. Coppola, D. Alfieri, S. De Nicola, A. Finizio and G. Pierattini, �??Recent advancements in digital holographic microscopy and its applications,�?? in Optical Metrology in Production Engineering, Wolfgang Osten and Mitsuo Takeda, eds., Proc. SPIE 5457, 481-491 (2004).

O. Matoba and B. Javidi, �??Optical security in data communication and display,�?? in Optical Information Systems, Bahram Javidi and Demetri Psaltis, eds., Proc. SPIE 5202, 68-75 (2003).

Other

J. W. Goodman, Introduction to Fourier Optics (The McGraw-Hill Companies, Inc. New York, 1996).

Z. L. Yu and G. F. Jin, Optical information processing (Tsinghua University Press, Beijing, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Propagation sketch of the object beam

Fig. 2.
Fig. 2.

Space-bandwidth product of a digital hologram

Fig. 3.
Fig. 3.

Effective field of view of an in-line Fresnel digital holography system

Fig. 4.
Fig. 4.

Imaging capacity of digital holography systems

Fig. 5.
Fig. 5.

Effect of sampling amount of CCD sensors

Fig. 6.
Fig. 6.

Intensity distortion in reconstructed images

Fig. 7.
Fig. 7.

Influence of pixel size on amplitude distortion

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

( x o , γ o ) o ( x o + λ D γ o , γ o ) H .
h ( x H ) = O H 2 + R H 2 + 2 O H R H cos ( 2 π γ O x H ) .
S W H : in line = S W O · ( 1 + λ D W O L O ) .
h ( x H ) = O H 2 + R H 2 + 2 O H R H cos [ 2 π ( γ O + γ θ ) x H ] ,
{ x O x H = x O + λ D γ O , γ O γ H = [ ( γ O + γ θ ) , 0 , ( γ O + γ θ ) ] .
S W H : off axis = ( L O + λ D W O ) · ( W O + 2 γ θ ) .
S W H : off axis = 4 S W O . ( 1 + λ D W O L O ) .
L x × L y = ( λ D Δ N x N x · Δ N x ) × ( λ D Δ N y N y · Δ N y ) .
{ W O : in line = N L O + N · Δ N , W O : off axis = N 4 L O + N · Δ N .
{ S W in line = N · L O L O + N · Δ N , S W off axis = N · L O 4 L O + N · Δ N .
{ S W in line = [ N x ( N x · Δ N x ) 2 λ D ] [ N y ( N y · Δ N y ) 2 λ D ] , S W off axis = 1 4 [ N x ( N x · Δ N x ) 2 λ D ] [ N y ( N y · Δ N y ) 2 λ D ] .
h ( x H , y H ) = ± rect ( x H ξ Δ N x ) rect ( y H η Δ N y ) h ( ξ , η ) d ξ d η
= rect ( x H Δ N x ) rect ( y H Δ N y ) h ( x H , y H ) ,
U ( x I , y I ) = ( Δ N x Δ N y ) Sinc ( Δ N x x I λ D ) Sinc ( Δ N y y I λ D )
· F { h ( x H , y H ) · exp [ j π λ D ( x H 2 + y H 2 ) ] }
( Δ N x Δ N y ) comb ( Δ N x x I λ D ) comb ( ( Δ N y y I λ D ) .

Metrics