Abstract

We report a strong spectral broadening of femtosecond pulses propagating in a single-mode As-S glass fiber of 1.5 m length. The pump pulse spectrum is broadened by a factor of five when the input power is grown up to 16.4 mW. The broadened spectra are nearly symmetric and self-phase modulation is believed to be the dominant nonlinear effect responsible for this process.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, �??Nonlinear optical properties of chalcogenide glasses in the system As-S-Se,�?? J. Non-Cryst. Solids 256&257, 353-360 (1999).
    [CrossRef]
  2. S. Spalter, G. Lenz, R. E. Slusher, H. Y. Hwang, J. Zimmermann, T. Katsufuji, S-W. Cheong, and M. E. Lines, �??Highly nonlinear chalcogenide glasses for ultrafast all optical switching in optical TDM communication systems,�?? in Proceedings of IEEE Conference on Optical Fiber Communication (Institute of Electrical and Electronics Engineers, Baltimore, Maryland, 2000), pp. 137-139.
  3. J. Harbold, F. Wise, and B. Aitken, �??Se-based chalcogenide glasses 1000 times more nonlinear than fused silica,�?? in Proceedings of IEEE Conference on Lasers and Electro-Optics (Institute of Electrical and Electronics Engineers, Baltimore, Maryland, 2001), pp. 14-15.
  4. M. Asobe, T. Kanamori, and K. Kubodera, �??Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,�?? IEEE J. Quantum Electron. 29, 2325-2333 (1993).
    [CrossRef]
  5. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, �??Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,�?? J. Opt. Soc. Am. B 21, 1146-1155 (2004).
    [CrossRef]
  6. L. B. Shaw, P. A. Thielen, F. H. Kung, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, �??IR supercontinuum generation in As-Se photonic crystal fiber,�?? in Proceedings of OSA Topic Meeting on Advanced Solid State Photonics (Optical Society of America, Vienna, Austria, 2005), paper: TuC5.
  7. E. M. Dianov, V. G. Plotnichenko, Yu. N. Pyrkov, I. V. Smol�??nikov, S. A. Koleskin, G. G. Devyatykh, M. F. Churbanov, G. E. Snopatin, I. V. Skripachev, and R. M. Shaposhnikov, �??Single-mode As-S glass fibers,�?? Inorganic Materials 39, 627-630 (2003).
    [CrossRef]
  8. M. Asobe, H. Kobayashi, H. Itoh, and T. Kanamori, �??Laser-diode-driven ultrafast all-optical switching by using highly nonlinear chalcogenide glass fiber,�?? Opt. Lett. 18, 1056-1058 (1993).
    [CrossRef] [PubMed]
  9. F. M. Mitschke and L. F. Mollenauer, �??Discovery of the soliton self-frequency shift,�?? Opt. Lett. 11, 659-661 (1986).
    [CrossRef] [PubMed]
  10. D.-P. Wei, T. V. Galstian, A. Zohrabyan, and L. Mouradian, �??Tunable femtosecond soliton generation in a Ge-doped fiber,�?? Electron. Lett. 40, 1329-1330 (2004).
    [CrossRef]
  11. P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, �??Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,�?? Opt. Express 11, 3568-3573 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3568">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3568</a>
    [CrossRef] [PubMed]
  12. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, �??Spectral broadening of femtosecond pulses into continuum radiation in microstructure fibers,�?? Opt. Express 10, 1083-1098 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1083.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1083</a>
    [PubMed]

Electron. Lett. (1)

D.-P. Wei, T. V. Galstian, A. Zohrabyan, and L. Mouradian, �??Tunable femtosecond soliton generation in a Ge-doped fiber,�?? Electron. Lett. 40, 1329-1330 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Asobe, T. Kanamori, and K. Kubodera, �??Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,�?? IEEE J. Quantum Electron. 29, 2325-2333 (1993).
[CrossRef]

Inorganic Materials (1)

E. M. Dianov, V. G. Plotnichenko, Yu. N. Pyrkov, I. V. Smol�??nikov, S. A. Koleskin, G. G. Devyatykh, M. F. Churbanov, G. E. Snopatin, I. V. Skripachev, and R. M. Shaposhnikov, �??Single-mode As-S glass fibers,�?? Inorganic Materials 39, 627-630 (2003).
[CrossRef]

J. Non- Cryst. Solids (1)

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, �??Nonlinear optical properties of chalcogenide glasses in the system As-S-Se,�?? J. Non-Cryst. Solids 256&257, 353-360 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (2)

Other (3)

S. Spalter, G. Lenz, R. E. Slusher, H. Y. Hwang, J. Zimmermann, T. Katsufuji, S-W. Cheong, and M. E. Lines, �??Highly nonlinear chalcogenide glasses for ultrafast all optical switching in optical TDM communication systems,�?? in Proceedings of IEEE Conference on Optical Fiber Communication (Institute of Electrical and Electronics Engineers, Baltimore, Maryland, 2000), pp. 137-139.

J. Harbold, F. Wise, and B. Aitken, �??Se-based chalcogenide glasses 1000 times more nonlinear than fused silica,�?? in Proceedings of IEEE Conference on Lasers and Electro-Optics (Institute of Electrical and Electronics Engineers, Baltimore, Maryland, 2001), pp. 14-15.

L. B. Shaw, P. A. Thielen, F. H. Kung, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, �??IR supercontinuum generation in As-Se photonic crystal fiber,�?? in Proceedings of OSA Topic Meeting on Advanced Solid State Photonics (Optical Society of America, Vienna, Austria, 2005), paper: TuC5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Transmission loss spectrum of the single-mode chalcogenide glass fiber with core/cladding diameters of 4/125 µm.

Fig. 3.
Fig. 3.

Nonlinearly broadened output spectra from the 1.5 m chalcogenide fiber for fiber-input powers of (a) 7.5 mW, (b) 11.9 mW, and (c) 16.4 mW. The dashed curve shows the initial pump pulse spectrum.

Fig. 4.
Fig. 4.

15-dB bandwidths of the broadened spectra versus the input power.

Fig. 5.
Fig. 5.

Nonlinearly broadened output spectra from SMF-28 with the lengths of (a) 1.5 m, and (b) 2.2 km, respectively. The dashed curve shows the initial pump pulse spectrum.

Metrics