Abstract

A model of large core and multimode photonic crystal fiber (PCF) with sealed air holes at its end face is proposed for the first time. The model indicates that this PCF can be replaced by another equivalent fiber with complete holes at a new end-face position. Instead of a segment of glass rod between the old and new end faces, light rays travel in a virtual medium with the loss rating of pure glass but the refractive index of the immersion medium. For a two-fiber structure, this segment of pure glass has the capability of enhancing the light collection efficiency, which is investigated using a specifically designed fiber probe and fluorescent samples with different concentrations.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. J.C. Knight, T.A. Birks, P.St.J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photoniccrystal cladding," Opt. Lett. 21, 1547-1549 (1996).
  2. T.A. Birks, J.C. Knight, and P.St.J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
  3. J.C. Knight, J. Broeng, T.A. Birks, and P. S. J. Russel, "Photonic band-gap guidance in optical fibers," Science 282, 1476 � 1478 (1998).
  4. N.A. Mortensen, M.D. Nielsen, J.R. Folkenberg, A. Petersson, and H.R. Simonsen, "Improved large-mode-area endlessly single-mode photonic crystal fibers," Opt. Lett. 24, 46-48 (1999).
  5. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, "High-power air-clad large-mode-area photonic crystal fiber laser," Opt. Express 11, 818-823 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-818.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-818.</a>
  6. T. M. Monro, D. J. Richardson, N. G. R. Broderick and P. J. Bennett, "Holey optical fibers: an efficient modal model," J. Lightwave Technol. 17, 1093-1102 (1999).
  7. Multimode Untra High NA Photonic Crystal fiber-MM?HN?200, (MM?HNA?200 Rev 2.0 Oct. 2003), <a href="http://www.crystal-fibre.com/datasheets/MM-HNA-200.pdf.">http://www.crystal-fibre.com/datasheets/MM-HNA-200.pdf.</a>
  8. Thomas F. Cooney, H. Trey Skinner and S. M. Angel, "Comparative study of some fiber-optic remote raman probe designs. Part II: tests of single-fiber, lensed and flat-and bevel-tip multi-fiber probes," Appl. Spectrosc. 50, 849-860 (1996).
  9. P. Plaza, Nguyen Quy Dao, M. Jouan, H. Fevrier, and H. Saisse, "Simulation et optimization des capteurs � fibres optiques adjacentes," Appl. Opt. 25, 3448-3454 (1986).
  10. Scott D. Schwab and Richard L. McCreery, "Versatile, efficient Raman sampling with fiber optics," Anal. Chem. 56, 2199-2204 (1984).
  11. J. Ma, W. J. Bock, "Light coupling model for a photonic crystal fiber with air holes collapsed at the fiber end," in : Photonic Applications in Telecommunications, Sensors, Software, and Lasers, J. Armitage, R. Lessard, G. Lampropoulos, eds., Proc. SPIE Vol. 5579, 93-98 (2004)
  12. J. J. Larsen and G. Vienne, "Side pumping of double-clad photonic crystal fibers," Opt. Lett. 29, 436 � 438 (2004).
  13. A. D. Yablon and R. T. Bise, "Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses," IEEE Photonics Technol. Lett. 17, 118-120 (2005).
  14. E. C. M�gi, H. C. Nguyen, and B. J. Eggleton, "Air-hole collapse and mode transitions in microstructured fiber photonic wires," Opt. Express 13, 453-459 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-453">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-453</a>
  15. G. Keiser, Optical fiber communications (McGraw-Hill Higher Education, third edition, 2000), Chap. 2.
  16. Z. Zhu and M. C. Yappert, "Determination of the effective depth and equivalent pathlength for a single-fiber fluorometric sensor," Appl. Spectrosc. 46, 912-918 (1992).
  17. Z. Zhu and M. C. Yappert, "Determination of the effective depth for double-fiber fluorometric sensors," Appl. Spectrosc. 46, 919-924 (1992).
  18. USB2000 Miniature Fiber Optic Spectrometer (Ocean Optics, 2005), <a href="http://www.oceanoptics.com/products/usb2000.asp">http://www.oceanoptics.com/products/usb2000.asp</a>

Anal. Chem. (1)

Scott D. Schwab and Richard L. McCreery, "Versatile, efficient Raman sampling with fiber optics," Anal. Chem. 56, 2199-2204 (1984).

Appl. Opt. (1)

Appl. Spectrosc. (3)

IEEE Photonics Technol. Lett. (1)

A. D. Yablon and R. T. Bise, "Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses," IEEE Photonics Technol. Lett. 17, 118-120 (2005).

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Lett. (4)

Proc. SPIE (1)

J. Ma, W. J. Bock, "Light coupling model for a photonic crystal fiber with air holes collapsed at the fiber end," in : Photonic Applications in Telecommunications, Sensors, Software, and Lasers, J. Armitage, R. Lessard, G. Lampropoulos, eds., Proc. SPIE Vol. 5579, 93-98 (2004)

Science (1)

J.C. Knight, J. Broeng, T.A. Birks, and P. S. J. Russel, "Photonic band-gap guidance in optical fibers," Science 282, 1476 � 1478 (1998).

Other (3)

Multimode Untra High NA Photonic Crystal fiber-MM?HN?200, (MM?HNA?200 Rev 2.0 Oct. 2003), <a href="http://www.crystal-fibre.com/datasheets/MM-HNA-200.pdf.">http://www.crystal-fibre.com/datasheets/MM-HNA-200.pdf.</a>

G. Keiser, Optical fiber communications (McGraw-Hill Higher Education, third edition, 2000), Chap. 2.

USB2000 Miniature Fiber Optic Spectrometer (Ocean Optics, 2005), <a href="http://www.oceanoptics.com/products/usb2000.asp">http://www.oceanoptics.com/products/usb2000.asp</a>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics