Abstract

We show that conventional paper can be cut using a 1W laser diode, provided the cutting lines are first traced using a proper ink. The ink should absorb the laser light, and penetrate deep into the paper. An “invisible ink” that is transparent in the visible range and absorbing in the infrared has been successfully tested. The paper is tidily cut. The laser power required to cut the paper is proportional to the displacement speed of the paper. Cutting speeds exceeding 3 cm.s-1. W-1 have been demonstrated. At higher speeds, the paper is not cut through, but easy-tearable lines and easy-folding lines are obtained. The whole inking and laser cutting process may be integrated into next generations of personal inkjet printers and expand document creation abilities.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. Chrissolouris, Laser Machining Theory and Practice (Springer Verlag, New York, 1991).
  2. F. Bachmann, �??Industrial applications of high power diode lasers in materials processing,�?? Appl. Surf. Sci. 208-209, 125-136 (2003).
    [CrossRef]
  3. <a href= "http://www.versalaser.com">http://www.versalaser.com</a>
  4. O. Acher, �??Peripheral which can be used to print and cut sheets of paper using a low-power laser source,�?? patent WO2004069542 (2004).
  5. <a href= "http://www.clearweld.com">http://www.clearweld.com</a>
  6. L. P. Frieder and G. MacGrath, �??Welding with lasers,�?? Med. Device Technol. 13, 56 (2002).
    [PubMed]
  7. J.H. Schut, �??Plastic welding : Laser and infrared systems expand capability,�?? Plastics Technology (2004), <a href= "http://www.plasticstechnology.com/articles/200410fa2.html">http://www.plasticstechnology.com/articles/200410fa2.html<a/>.
  8. W. Kautek, S. Pentzien, P. Rudolph, J. Krüger and E. Konig, �??Laser interaction with coated collagen and cellulose fibre composites: fundamentals of laser cleaning of ancient parchment manuscripts and paper,�?? Appl. Surf. Sci. 127-129, 746-754 (1998).
    [CrossRef]
  9. R. Stewart, L. Li and D. Thomas, �?? Multipass laser ablation of three coloured ink from a paper substrate,�?? J. Mater. Process. Technol. 114, 161-167 (2001).
    [CrossRef]
  10. H. Sirringhaus and T. Shimoda, �??Inkjet printing of functional materials,�?? MRS bulletin 28, 802-806 (2003).
    [CrossRef]
  11. A. Al-Muhanna, L.J. Mawst, D. Botez, D.Z. Garbuzov, R.U. Martinelli and J.C. Conolly, �??High-power (>10 W) continuous-wave operation from 100-µm-aperture 0.97-µm-emitting Al-free diode lasers,�?? Appl. Phys. Lett. 73, 1182-1184 (1998).
    [CrossRef]
  12. Yi Qu, Shu Yuan, Chong Yang Liu, Baoxue Bo, Guolun Liu and Huilin Jiang, �??High-power InAlGaAs/GaAs and AlGaAs/GaAs semiconductor laser arrays emitting at 808 nm,�?? IEEE Photonics Technol. Lett. 16, 389-391 (2004).
    [CrossRef]
  13. �??La TRACTechnologie ouvre la voie à l�??impression 3D,�?? <a href= "http://www.cea-technologies.com/article/article.php?article=379">http://www.cea-technologies.com/article/article.php?article=379<a/>
  14. A. J. Sellen and R. H. Harper, The myth of the paperless office (The MIT Press, Cambridge, 2002).

Appl. Phys. Lett. (1)

A. Al-Muhanna, L.J. Mawst, D. Botez, D.Z. Garbuzov, R.U. Martinelli and J.C. Conolly, �??High-power (>10 W) continuous-wave operation from 100-µm-aperture 0.97-µm-emitting Al-free diode lasers,�?? Appl. Phys. Lett. 73, 1182-1184 (1998).
[CrossRef]

Appl. Surf. Sci. (2)

F. Bachmann, �??Industrial applications of high power diode lasers in materials processing,�?? Appl. Surf. Sci. 208-209, 125-136 (2003).
[CrossRef]

W. Kautek, S. Pentzien, P. Rudolph, J. Krüger and E. Konig, �??Laser interaction with coated collagen and cellulose fibre composites: fundamentals of laser cleaning of ancient parchment manuscripts and paper,�?? Appl. Surf. Sci. 127-129, 746-754 (1998).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

Yi Qu, Shu Yuan, Chong Yang Liu, Baoxue Bo, Guolun Liu and Huilin Jiang, �??High-power InAlGaAs/GaAs and AlGaAs/GaAs semiconductor laser arrays emitting at 808 nm,�?? IEEE Photonics Technol. Lett. 16, 389-391 (2004).
[CrossRef]

Mater. Process. Technol. (1)

R. Stewart, L. Li and D. Thomas, �?? Multipass laser ablation of three coloured ink from a paper substrate,�?? J. Mater. Process. Technol. 114, 161-167 (2001).
[CrossRef]

Med. Device Technol. (1)

L. P. Frieder and G. MacGrath, �??Welding with lasers,�?? Med. Device Technol. 13, 56 (2002).
[PubMed]

MRS bulletin (1)

H. Sirringhaus and T. Shimoda, �??Inkjet printing of functional materials,�?? MRS bulletin 28, 802-806 (2003).
[CrossRef]

Plastics Technology (1)

J.H. Schut, �??Plastic welding : Laser and infrared systems expand capability,�?? Plastics Technology (2004), <a href= "http://www.plasticstechnology.com/articles/200410fa2.html">http://www.plasticstechnology.com/articles/200410fa2.html<a/>.

Other (6)

<a href= "http://www.versalaser.com">http://www.versalaser.com</a>

O. Acher, �??Peripheral which can be used to print and cut sheets of paper using a low-power laser source,�?? patent WO2004069542 (2004).

<a href= "http://www.clearweld.com">http://www.clearweld.com</a>

�??La TRACTechnologie ouvre la voie à l�??impression 3D,�?? <a href= "http://www.cea-technologies.com/article/article.php?article=379">http://www.cea-technologies.com/article/article.php?article=379<a/>

A. J. Sellen and R. H. Harper, The myth of the paperless office (The MIT Press, Cambridge, 2002).

G. Chrissolouris, Laser Machining Theory and Practice (Springer Verlag, New York, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Absorbance spectra of white paper, not inked (bottom curve); inked with infrared absorbing ink (middle curve); inked with black marker ink (top curve).

Fig. 2.
Fig. 2.

Laser cuts obtained on paper marked using black marker ink: a) showing interruption of the cut when the laser moves outside the marked area; b) top close view; c) close view on the reverse side of the paper.

Fig. 3.
Fig. 3.

Laser cut obtained on paper marked using infrared invisible ink.

Fig. 4.
Fig. 4.

Results of laser interaction for different laser powers and speeds, on paper inked using black marker ink (squares) or invisible IR absorbing ink (triangles) ; full symbols indicate a complete cut, and hollow symbols indicate a partial cut. The lines represent the asymptotic dependence of maximal speed cutting speed as a function of laser power.

Fig. 5.
Fig. 5.

Incomplete cut (scoring) obtained by fast laser movement on paper marked using infrared invisible ink.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E 1 = P v = ρ π R δ C p Δ T d 2

Metrics