Abstract

Single-frequency lasers in the blue-green (500 nm) visible spectrum are important for many applications including iodine precision spectroscopy, optical frequency standards or ionized argon lasers substitution. To the best of our knowledge, we report in this paper the first single-frequency diode-pumped Ytterbium-doped solid-state laser operating at 501.7 nm by intracavity second harmonic generation (SHG). The single-frequency fundamental infrared laser light is generated by a diode-pumped Yb3+:Y2SiO5 crystal in a ring oscillator. Intracavity SHG with a KNbO3 nonlinear crystal produced more than 50 mW of single-frequency blue-green radiation.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. Picard, L. Robertson, L.-S. Ma, K. Nyholm, M. Merimaa, T.E. Ahola, P. Kren, and J.-P. Wallerand, "Comparison of 127I2-satbilized frequency-doubled Nd:YAG lasers at the Bureau International des Poids et Mesures," Appl. Opt. 42, 1019-1027 (2003).
    [CrossRef] [PubMed]
  2. W.-Y. Cheng, L. Chen, T.H. Yoon, J.L. Hall, J. Ye," Sub-Doppler molecular-iodine transitions near the dissociation limit (523�??498 nm)," Opt. Lett. 27, 571-573 (2002).
    [CrossRef]
  3. J.-C. Keller, M. Broyer, and J.-C. Lehmann, "Mesure directe de la durée de vie et des facteurs de Landé du niveau 3�?O+, ν'=62, J�??=27 de la molécule I2," C.R Acad. Sc. Paris tome 277-série B, 369-372 (8 octobre 1973).
  4. J. Ye, L-S Ma, and J. L. Hall, "High resolution frequency standard at 1030 nm for Yb:YAG solid-state lasers," J. Opt. Soc. Am. B 17, 927-931 (2000).
    [CrossRef]
  5. R. H. Abram, K. S. Gardner, E. Riis, and A. I. Ferguson, "Narrow linewidth operation of a tunable optically pumped semiconductor laser," Opt. Express 12, 5434-5439 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5434">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-22-5434</a>
    [CrossRef] [PubMed]
  6. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+ doped Crystals for laser applications," IEEE J. Quantum Electron. 29, 1179-1191 (1993).
    [CrossRef]
  7. M. Jacquemet, F. Balembois, S. Chénais, F. Druon, P. Georges, R. Gaumé, and B. Ferrand, "First diode-pumped Yb-doped solid-state laser continuously tunable between 1000 and 1010 nm," Appl. Phys. B 78, 13-18 (2004).
    [CrossRef]
  8. W. Drozdowski, A. J. Wojtowicz, D. Wisniewski, P. Szupryczynski, S. Janus, J. L. Lefaucheur, and Z. Goub, "VUV spectroscopy and low temperature thermoluminescence of LSO:Ce and YSO:Ce," J. Alloys and Comp. 380, 146-150 (2004).
    [CrossRef]
  9. C. K. Chang, J.Y. Chang, and Y. K. Kuo, " Optical Performance of Cr:YSO Q-switched Cr:LiCAF and Cr:LiSAF Lasers," in High-Power Lasers and Applications Proc. SPIE 4914, 498-509 (2002).
  10. C. Deka, B. H. T. Chai, Y. Shimony, X. X. Zhang, E. Munin, and M. Bass, "Laser performance of Cr4+:Y2SiO5," Appl. Phys. Lett. 61, 2141-2143 (1992).
    [CrossRef]
  11. B. Comaskey, G. F. Albrecht, S. P. Velsko, and B. D. Moran, "24-W average power at 0.537 µm from an externally frequency-doubled Q-switched diode-pumped Nd:YOS laser oscillator," Appl. Opt. 33, 6377-6382 (1994).
    [CrossRef] [PubMed]
  12. C. Li, R. Moncorgé, J.C. Souriau, C. Borel, and C. Wyon, "Room temperature CW laser action of Y2SiO5:Yb3+, Er3+ at 1.57 µm," Opt. Commun. 107, 61-64 (1994).
    [CrossRef]
  13. M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, "Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping," Appl. Phys. B 80, 171-176 (2005).
    [CrossRef]
  14. S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, "Thermal lensing in diode-pumped ytterbium lasers - Part.I: Theoritical analysis and wavefront measurements," IEEE J. Quantum Electron. 40, 1217-1233 (2004).
    [CrossRef]

Appl. Opt.

Appl. Phys. B

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, "Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping," Appl. Phys. B 80, 171-176 (2005).
[CrossRef]

M. Jacquemet, F. Balembois, S. Chénais, F. Druon, P. Georges, R. Gaumé, and B. Ferrand, "First diode-pumped Yb-doped solid-state laser continuously tunable between 1000 and 1010 nm," Appl. Phys. B 78, 13-18 (2004).
[CrossRef]

Appl. Phys. Lett.

C. Deka, B. H. T. Chai, Y. Shimony, X. X. Zhang, E. Munin, and M. Bass, "Laser performance of Cr4+:Y2SiO5," Appl. Phys. Lett. 61, 2141-2143 (1992).
[CrossRef]

C.R Acad. Sc. Paris

J.-C. Keller, M. Broyer, and J.-C. Lehmann, "Mesure directe de la durée de vie et des facteurs de Landé du niveau 3�?O+, ν'=62, J�??=27 de la molécule I2," C.R Acad. Sc. Paris tome 277-série B, 369-372 (8 octobre 1973).

IEEE J. Quantum Electron.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+ doped Crystals for laser applications," IEEE J. Quantum Electron. 29, 1179-1191 (1993).
[CrossRef]

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, "Thermal lensing in diode-pumped ytterbium lasers - Part.I: Theoritical analysis and wavefront measurements," IEEE J. Quantum Electron. 40, 1217-1233 (2004).
[CrossRef]

J. Alloys and Comp.

W. Drozdowski, A. J. Wojtowicz, D. Wisniewski, P. Szupryczynski, S. Janus, J. L. Lefaucheur, and Z. Goub, "VUV spectroscopy and low temperature thermoluminescence of LSO:Ce and YSO:Ce," J. Alloys and Comp. 380, 146-150 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

C. Li, R. Moncorgé, J.C. Souriau, C. Borel, and C. Wyon, "Room temperature CW laser action of Y2SiO5:Yb3+, Er3+ at 1.57 µm," Opt. Commun. 107, 61-64 (1994).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

C. K. Chang, J.Y. Chang, and Y. K. Kuo, " Optical Performance of Cr:YSO Q-switched Cr:LiCAF and Cr:LiSAF Lasers," in High-Power Lasers and Applications Proc. SPIE 4914, 498-509 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

“Double bow tie” cavity setup - M1-M2≈112 mm, M2-M3≈230 mm, M3-M6≈300 mm, M6-M5≈245 mm, M5-M4≈295 mm, M4-M1≈235 mm, FP:Fabry-Perot solid etalon.

Fig. 2.
Fig. 2.

Output powers at 1003.4 nm and 501.7 nm in single-frequency operation.

Fig. 3.
Fig. 3.

Typical 1.5-GHz confocal scanning Fabry-Perot trace for the 1003.4 nm beam, confirming single-frequency operation. Inset: Zoom of one peak (1 graduation=1.5 MHz)

Metrics