Abstract

A method for increasing the coupling efficiency between ridge optical waveguides and PhCCRWs is described. This increase is achieved via W1 channel waveguide sections, formed within a two-dimensional triangular lattice photonic crystal using mode-matching. The mode-matching is achieved by low quality-factor modified cavities added to both the input and output ports of the PhCCRW. A three dimensional finite-difference time-domain method has been used to simulate light propagation through the modified PhCCRW. We have fabricated PhCCRWs working at 1.5µm in silicon-on-insulator material. Measurements and simulations show that the overall transmission is improved by a factor of two.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, �??Coupled-resonator optical waveguide: a proposal and analysis,�?? Opt. Lett. 24, 711-713 (1999).
    [CrossRef]
  2. N. Stefanou and A. Modinos, �??Impurity bands in photonic insulators,�?? Phys. Rev. B 57, 12127-12133 (1998).
    [CrossRef]
  3. S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdre, and U. Oesterle, �??Miniband transmission in a photonic crystal coupled-resonator optical waveguide,�?? Opt. Lett. 26, 1019-1021 (2001).
    [CrossRef]
  4. T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, �??Planar photonic crystal coupled cavity waveguides,�?? IEEE J. Sel. Top. Quantum Electron. 8, 909-918 (2002).
    [CrossRef]
  5. A. Martínez, A. García, P. Sanchis, J. Martí, �??Group velocity and dispersion model of coupled-cavity waveguides in photonic crystals,�?? J. Opt. Soc. Am. A 20, 147-150 (2003).
    [CrossRef]
  6. T. J. Karle, Y. J. Chai, C. N. Morgan, I. H. White, and T. F. Krauss, �??Observation of Pulse Compression in Photonic Crystal Coupled Cavity Waveguides,�?? J. Lightwave Technol. 22, 514-519 (2004).
    [CrossRef]
  7. S. Mookherjea, A. Yariv, �??Kerr-stabilized super-resonant modes in coupled-resonator optical waveguides,�?? Phys. Rev. E 66, 046610-046616 (2002).
    [CrossRef]
  8. S. Mookherjea, A. Yariv, �??Coupled Resonator Optical Waveguides,�?? IEEE J. Sel. Top. Quantum Electron. 8, 448-456 (2002).
    [CrossRef]
  9. S. Mookherjea, D. S. Cohen, and A. Yariv, �??Nonlinear dispersion in a coupled-resonator optical waveguide,�?? Opt. Lett. 27, 933-935 (2002).
    [CrossRef]
  10. S. Mookherjea, A. Yariv, �??Second-harmonic generation with pulses in a coupled-resonator optical waveguide,�?? Phys. Rev. E 65, 026607-026615 (2002).
    [CrossRef]
  11. M. Bayindir and E. Ozbay, �??Band-dropping via coupled photonic crystal waveguides,�?? Opt. Express 10, 1279-1284 (2002). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1279">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1279</a>
    [PubMed]
  12. M. Bayindir, B. Temelkuran, and E. Ozbay, �??Photonic crystal based beam splitters,�?? Appl. Phys. Lett. 77, 3902-3904 (2000).
    [CrossRef]
  13. H. M. H. Chong and R. M. De La Rue, �??Tuning of photonic crystal waveguide microcavity by thermooptic effect,�?? IEEE Photon. Technol. Lett. 16, 1528-1530 (2004).
    [CrossRef]
  14. A. S. Jugessur, P. Pottier and R. M. De La Rue, �??One-dimensional photonic crystal microcavity filters with transition mode-matching features, embedded in ridge waveguide,�?? Electron. Lett. 39, 367-369 (2003).
    [CrossRef]
  15. A. S. Jugessur, P. Pottier and R. M. De La Rue, �??Engineering the filter response of photonic crystal microcavity filters,�?? Opt. Express 12, 1304-1312 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1304">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1304</a>
    [CrossRef] [PubMed]
  16. J. P. Berenger, �??Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,�?? J. Comput. Phys. 127, 363-379 (1996).
    [CrossRef]
  17. A. Lavrinenko and D. Gallagher, �??CrystalWave�??, Photon Design, <a href="www.photond.com">www.photond.com</a>, developed under European Framework 5 Project �??PICCO�??, (2003).
  18. K. Srinivasan and O. Painter, �??Momentum space design of high-Q photonic crystal optical cavities,�?? Opt. Express 10, 670-684 (2002). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670</a>
    [PubMed]
  19. H. Ryu, M. Notomi, G. Kim and Y. Lee, �??High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity,�?? Opt. Express 12, 1708-1719 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1708">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1708</a>
    [CrossRef] [PubMed]
  20. A.J. Ward and J.B. Pendry, �??A program for calculating photonic band structures, Green�??s functions and transmission/reflection coefficients using a non-orthogonal FDTD method,�?? Computer Physics Communications 128 590-621 (2000).
    [CrossRef]
  21. A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpth, M. Kristensen, T. Niemi, H. M. H. Chong, "Comprehensive FDTD modelling of photonic crystal waveguide components," Opt Express 12, 234-248 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-234">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-234</a>
    [CrossRef] [PubMed]

Appl. Phys. Lett.

M. Bayindir, B. Temelkuran, and E. Ozbay, �??Photonic crystal based beam splitters,�?? Appl. Phys. Lett. 77, 3902-3904 (2000).
[CrossRef]

Computer Physics Communications

A.J. Ward and J.B. Pendry, �??A program for calculating photonic band structures, Green�??s functions and transmission/reflection coefficients using a non-orthogonal FDTD method,�?? Computer Physics Communications 128 590-621 (2000).
[CrossRef]

Electron. Lett.

A. S. Jugessur, P. Pottier and R. M. De La Rue, �??One-dimensional photonic crystal microcavity filters with transition mode-matching features, embedded in ridge waveguide,�?? Electron. Lett. 39, 367-369 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, �??Planar photonic crystal coupled cavity waveguides,�?? IEEE J. Sel. Top. Quantum Electron. 8, 909-918 (2002).
[CrossRef]

S. Mookherjea, A. Yariv, �??Coupled Resonator Optical Waveguides,�?? IEEE J. Sel. Top. Quantum Electron. 8, 448-456 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

H. M. H. Chong and R. M. De La Rue, �??Tuning of photonic crystal waveguide microcavity by thermooptic effect,�?? IEEE Photon. Technol. Lett. 16, 1528-1530 (2004).
[CrossRef]

J. Comput. Phys.

J. P. Berenger, �??Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,�?? J. Comput. Phys. 127, 363-379 (1996).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

Opt Express

A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpth, M. Kristensen, T. Niemi, H. M. H. Chong, "Comprehensive FDTD modelling of photonic crystal waveguide components," Opt Express 12, 234-248 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-234">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-234</a>
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

N. Stefanou and A. Modinos, �??Impurity bands in photonic insulators,�?? Phys. Rev. B 57, 12127-12133 (1998).
[CrossRef]

Phys. Rev. E

S. Mookherjea, A. Yariv, �??Second-harmonic generation with pulses in a coupled-resonator optical waveguide,�?? Phys. Rev. E 65, 026607-026615 (2002).
[CrossRef]

S. Mookherjea, A. Yariv, �??Kerr-stabilized super-resonant modes in coupled-resonator optical waveguides,�?? Phys. Rev. E 66, 046610-046616 (2002).
[CrossRef]

Other

A. Lavrinenko and D. Gallagher, �??CrystalWave�??, Photon Design, <a href="www.photond.com">www.photond.com</a>, developed under European Framework 5 Project �??PICCO�??, (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

A photonic crystal CRW with modified end cavities. The diameter of the outer holes (A) is 79 % of the diameter of holes that form the majority of the crystal (N). The diameter of the holes modifying the end cavities (B) is 42 % of the diameter of N.

Fig. 2.
Fig. 2.

The transverse cross-section of the basic vertical confinement structure, with propagation normal to the plane of the diagram.

Fig. 3.
Fig. 3.

The Yee scheme (on the left), showing staggering of the Ex, Hy and Hz fields. (In 2D only{Ex, Hy, Hz} or {Hx, Ey, Ez} need to be considered, depending on the polarisation of the launched light). On the right is the Ward/Pendry scheme, where fields are unstaggered but a forward-difference/backward-difference step in the evolution algorithm is applied in alternation. The dotted arrows show how the Ward/Pendry fields can be displaced to arrive at an equivalent of the Yee scheme. Though more complex, an equivalent displacement process can be applied to the 3D algorithm.

Fig. 4.
Fig. 4.

Spectra of transmitted power of the PhCCRW structures with and without matching cavities, where CRW2 is the coupled-resonator waveguide without matching cavities; CRW1 and CRW3 are coupled-resonator waveguides with matching cavities. The resonance can also be tuned: as the smaller hole is reduced in size the peak moves from shorter (solid line CRW1) to longer wavelength (dotted line CRW3).

Fig. 5.
Fig. 5.

Scanning electron micrographs of the photonic crystal CRW composed of 9 cavities, with additional input and output matching cavities. The inset shows one of the matching cavity regions, where A and B are the matching holes.

Fig. 6.
Fig. 6.

Schematic measurement set-up. Light from a tunable laser is guided by a fiber and collimated by a×20 objective lens, chopped, (TE)-polarized and focused onto the input port of the waveguide in the sample by a×40 objective lens. The light from the output port of the waveguide of the sample was imaged by another ×40 objective lens - and viewed initially by a camera. Subsequently, the output light was detected by a germanium detector. The signal was amplified by a lock-in amplifier, collected at the corresponding wavelength — and recorded on a computer.

Fig. 7.
Fig. 7.

The transmitted power spectra for the CRW composed of 9 cavities plus two matching cavities shown in Fig. 5, where thick solid and open-circle lines represent the experimental and simulation spectra. The thin solid and starred lines represent the experimental and simulation spectra for the CRW without matching cavities. The simulation results have already been shown in Fig. 4 (CRW1 and CRW2).

Metrics