Abstract

Low temperature (sub 1000°C) thermal hypersensitisation is reported in germanosilicate optical waveguides. Gratings are written using a CW 266nm laser source. In contrast to laser hypersensitisation, thermal excitation is generally dispersive involving a range of specific glass sites. More complex grating profiles presenting evidence of solid-state autocatalysis and bistability at increasingly high sensitisation temperatures are observed. More specifically, at 500°C, a behaviour resembling type IIA grating response is observed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. J. Lemaire, R, M. Atkins, V. Mizrahi, W.A Reed, �??High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,�?? Electon. Lett. 29, 1191-1193 (2004).
    [CrossRef]
  2. J. Canning, R. Pasman, M. G. Sceats, P. A. Krug, �??Photosensitisation of phosphosilicate fibre Bragg gratings,�?? Proc. Conference on photosensitivity and quadratic non-linearity, OSA, Portland, OR, 86-89 (1995).
  3. H. R. Sørensen, J. Canning, M. Kristensen, �??Laser hypersensitisation using 266nm light,�?? Laser Phys. Lett. 2, 194-197 (2004).
    [CrossRef]
  4. A. Canagasabey and J. Canning, �??UV lamp hypersensitisation of hydrogen-loaded optical fibres," Opt. Express 11, 1585�??1589 (2003).
    [CrossRef] [PubMed]
  5. J. Canning, P-F. Hu, �??Low-temperature hypersensitisation of phosphosilicate waveguides in hydrogen,�?? Opt. Lett. 26, 6, 1230-1232 (2001).
    [CrossRef]
  6. Fokine M., Margulis W., �??Large increase in photosensitivity through massive hydroxyl formation,�?? Opt. Lett. 25, 302-304 (2000).
    [CrossRef]
  7. J. Canning, �??Photosensitization and Photostabilization of Laser-Induced Index Changes in Optical Fibers,�?? Optical Fiber Tech. 6, 275-289 (2000).
    [CrossRef]
  8. J. Canning, �??The characteristic curve and site-selective laser excitation of local relaxation in glass�??, J. Chem. Phys. 120, 9715-9719 (2004).
    [CrossRef] [PubMed]
  9. J. Canning, �??Hydrogen and photosensitivity,�?? POWAG 2002 Summer school, St. Petersburg, Russia (2002).
  10. M. Kristensen, �??Ultraviolet-light-induced processes in germanium-doped silica,�?? Phys. Rev. B 64, 4201-4212 (2001).
    [CrossRef]
  11. P. Tandon, �??Chemical annealing of oxygen hole centers in bulk glasses,�?? J. Non-Cryst. Sol. 336, 212-217 (2004).
    [CrossRef]
  12. C.M. Smith, N.F. Borelli, J.J. Price, D.C. Allen, �??Excimer laser-induced expansion in hydrogen-loaded silica,�?? Appl. Phys. Lett. 78, 2452-2454 (2001).
    [CrossRef]
  13. Riant I., Haller F., �??Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence on fiber tension: type IIa aging,�?? J. Lightwave Technol. 15, 1466-1469 (1997).
    [CrossRef]
  14. P. J. Lemarie, �??Reliability of optical fibres exposed to hydrogen: prediction of long term loss increases,�?? Opt. Eng. 30, 6, 780-789 (1991).
    [CrossRef]
  15. H. R. Sørensen, J. Canning, M. Kristensen, results to be published.

Appl. Phys. Lett.

C.M. Smith, N.F. Borelli, J.J. Price, D.C. Allen, �??Excimer laser-induced expansion in hydrogen-loaded silica,�?? Appl. Phys. Lett. 78, 2452-2454 (2001).
[CrossRef]

Electon. Lett.

P. J. Lemaire, R, M. Atkins, V. Mizrahi, W.A Reed, �??High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,�?? Electon. Lett. 29, 1191-1193 (2004).
[CrossRef]

J. Chem. Phys.

J. Canning, �??The characteristic curve and site-selective laser excitation of local relaxation in glass�??, J. Chem. Phys. 120, 9715-9719 (2004).
[CrossRef] [PubMed]

J. Lightwave Technol.

Riant I., Haller F., �??Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence on fiber tension: type IIa aging,�?? J. Lightwave Technol. 15, 1466-1469 (1997).
[CrossRef]

J. Non-Cryst. Sol.

P. Tandon, �??Chemical annealing of oxygen hole centers in bulk glasses,�?? J. Non-Cryst. Sol. 336, 212-217 (2004).
[CrossRef]

Laser Phys. Lett.

H. R. Sørensen, J. Canning, M. Kristensen, �??Laser hypersensitisation using 266nm light,�?? Laser Phys. Lett. 2, 194-197 (2004).
[CrossRef]

Opt. Eng.

P. J. Lemarie, �??Reliability of optical fibres exposed to hydrogen: prediction of long term loss increases,�?? Opt. Eng. 30, 6, 780-789 (1991).
[CrossRef]

Opt. Express

Opt. Lett.

Optical Fiber Tech.

J. Canning, �??Photosensitization and Photostabilization of Laser-Induced Index Changes in Optical Fibers,�?? Optical Fiber Tech. 6, 275-289 (2000).
[CrossRef]

Phys. Rev. B

M. Kristensen, �??Ultraviolet-light-induced processes in germanium-doped silica,�?? Phys. Rev. B 64, 4201-4212 (2001).
[CrossRef]

POWAG 2002 Summer school

J. Canning, �??Hydrogen and photosensitivity,�?? POWAG 2002 Summer school, St. Petersburg, Russia (2002).

Proc. Conf. on photo. and quad. non-lin.

J. Canning, R. Pasman, M. G. Sceats, P. A. Krug, �??Photosensitisation of phosphosilicate fibre Bragg gratings,�?? Proc. Conference on photosensitivity and quadratic non-linearity, OSA, Portland, OR, 86-89 (1995).

Other

H. R. Sørensen, J. Canning, M. Kristensen, results to be published.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup for grating inscription and measurement.

Fig. 2.
Fig. 2.

Grating growth-curves in pristine and thermally hypersensitised fibres. Open symbols - index modulation, Δnmod. Closed symbols - effective index, Δnav.

Fig. 3.
Fig. 3.

Fringe contrasts normalized to the initial fringe contrast of the gratings written in 300, 360, 400, 500°C hypersensitized fibre and in unloaded fibre.

Fig. 4.
Fig. 4.

Example of Lorentzian fits made to the measured absorption spectrum for a heating time of 2½ minutes at 500°C in a 400Bar H2 loaded fibre.

Fig. 5.
Fig. 5.

Example of Lorentzian fits made to the measured absorption spectrum for a heating time of 38 minutes at 500°C in a 400Bar H2 loaded fibre.

Fig. 6.
Fig. 6.

Evolution of αGe-OH and αSi-OH in 400Bar H2 loaded fibre sensitised at 300, 360, 400 and 500°C

Fig. 7.
Fig. 7.

Evolution of the ratio of αGe-OH to αSi-OH in 400Bar H2 loaded fibre sensitised at 300, 360, 400 and 500°C

Fig. 8.
Fig. 8.

Evolution of the integrated and normalized area of the total absorption, Ge-OH and Si-OH absorption in 400Bar H2 loaded fibre hypersensitised at 500°C.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n eff = λ B λ B 0 Λ Mask
Δ n mod = λ B 2 π η L Grat ln ( 1 + R 1 R )

Metrics