Abstract

Light propagation in tissue is known to be favored in the Near Infrared spectral range. Capitalizing on this fact, new classes of molecular contrast agents are engineered to fluoresce in the Near Infrared. The potential of these new agents is vast as it allows tracking non-invasively and quantitatively specific molecular events in-vivo. However, to monitor the bio-distribution of such compounds in thick tissue proper physical models of light propagation are necessary. To recover 3D concentrations of the compound distribution, it is necessary to perform a model based inverse problem: Diffuse Optical Tomography. In this work, we focus on Fluorescent Diffuse Optical Tomography expressed within the normalized Born approach. More precisely, we investigate the performance of Fluorescent Diffuse Optical Tomography in the case of time resolved measurements. The different moments of the time point spread function were analytically derived to construct the forward model. The derivation was performed from the zero order moment to the second order moment. This new forward model approach was validated with simulations based on relevant configurations. Enhanced performance of Fluorescent Diffuse Optical Tomography was achieved using these new analytical solutions when compared to the current formulations.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
    [Crossref]
  2. X. Intes and B. Chance, “Non-PET Functional Imaging Techniques Optical,” Clin. No. Am. 43, 221–234 (2005).
  3. F. Jobsis, “Noninvasive infrared monitoring of cerebral and myocardial sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
    [Crossref] [PubMed]
  4. Y. Lin, G. Lech, S. Nioka, X. Intes, and B. Chance, “Noninvasive, low-noise, fast imaging of blood volume and deoxygenation changes in muscles using light-emitting diode continuous-wave imager,” Rev. Sci. Instrum. 73, 3065–3074 (2002).
    [Crossref]
  5. Y. Chen, C. Mu, X. Intes, D. Blessington, and B. Chance, “Frequency domain phase cancellation instrument for fast and accurate localization of fluorescent heterogeneity,” Rev. Sci. Instrum. 74, 3466–3473 (2003).
    [Crossref]
  6. B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, and T. Pham, et al., “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
    [Crossref] [PubMed]
  7. D. Grosenick, H. Wabnitz, K. Moesta, J. Mucke, M. Moller, C. Stroszczunski, J. Stobel, B. Wassermann, P. Schlag, and H. Rinnerberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys Med. Biol. 49, 1165–1181 (2004).
    [Crossref] [PubMed]
  8. H. Jiang, N. Iftimia, J. Eggert, L. Fajardo, and K. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194 (2002).
    [Crossref] [PubMed]
  9. M. Franceschini, K. Moesta, S. Fantini, G. Gaida, E. Gratton, and H. Jess, et al., “Frequency-domain techniques enhance optical mammography: Initial clinical results,” Proc. Nat. Acad. Sci. Am. 94, 6468–6473 (1997).
    [Crossref]
  10. S. Colak, M. van der Mark, G. Hooft, J. Hoogenraad, E. van der Linden, and F. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quatum Electron. 5, 1143–1158 (1999).
    [Crossref]
  11. X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. -Jean, F. Lesage, D. Hall, D. A. Boas, and M. Polyzos, “Time-Domain Optical Mammography Softscan®: Initial Results on Detection and Characterization of Breast Tumors”, Proc. SPIE 5578, 188–197 (2004).
    [Crossref]
  12. D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J Biomed Opt. 9, 230–238 (2004).
    [Crossref] [PubMed]
  13. G. Strangman, D. A. Boas, and J. Sutton, “Non-invasive neuroimaging using Near-Infrared light,” Biol. Psychiatry 52, 679–693 (2002).
    [Crossref] [PubMed]
  14. Y. Chen, D. Tailor, X. Intes, and B. Chance, “Quantitative correlation between Near-Infrared spectroscopy (NIRS) and magnetic resonance imaging (MRI) on rat brain oxygenation modulation,” Phys. Med. Biol. 48, 417–427 (2003).
    [Crossref] [PubMed]
  15. M. Stankovic, D. Maulik, W. Rosenfeld, P. Stubblefield, A. Kofinas, and E. Gratton, et al., “Role of frequency domain optical spectroscopy in the detection of neonatal brain hemorrhage- a newborn piglet study,” J. Matern. Fetal Med. 9, 142–149 (2000).
    [Crossref] [PubMed]
  16. J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys Med Biol. 49, 1117–1130 (2004).
    [Crossref] [PubMed]
  17. V. Quaresima, R. Lepanto, and M. Ferrari, “The use of near infrared spectroscopy in sports medicine,” J. Sports Med. Phys. Fitness 43, 1–13 (2003).
    [PubMed]
  18. X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30, 1039–1047 (2003).
    [Crossref] [PubMed]
  19. R. Weissleder and U. Mahmood, “Molecular imaging,” Radiology 219, 316–333 (2001).
    [PubMed]
  20. J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7, 626–634 (2003).
    [Crossref] [PubMed]
  21. K. Licha, “Contrast agents for optical imaging,” Topics in Current Chemistry 222, 1–29 (2002).
    [Crossref]
  22. G. Zheng, Y. Chen, X. Intes, B. Chance, and J. Glickson, “Contrast-Enhanced NIR Optical Imaging for subsurface cancer detection,” J. Porphyrin and Phthalocyanines 8, 1106–1118 (2004).
    [Crossref]
  23. S. Achilefu, R. Dorshow, J. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in-vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
    [Crossref] [PubMed]
  24. Y. Chen, G. Zheng, Z. Zhang, D. Blessington, M. Zhang, and H. Li, et al., “Metabolism Enhanced Tumor Localization by Fluorescence Imaging: In Vivo Animal Studies,” Opt. Lett. 28, 2070–2072 (2003).
    [Crossref] [PubMed]
  25. R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, “In vivo imaging with protease-activated near-infrared fluorescent probes,” Nat. Biotech. 17, 375–378 (1999).
    [Crossref]
  26. R. Weinberg, “How Does Cancer Arise,” Sci. Am. 275, 62–71 (1996).
    [Crossref] [PubMed]
  27. X. Intes, Y. Chen, X. Li, and B. Chance, “Detection limit enhancement of fluorescent heterogeneities in turbid media by dual-interfering excitation,” Appl. Opt. 41, 3999–4007 (2002).
    [Crossref] [PubMed]
  28. J. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, “Small animal imaging: current technology and perspectives for oncological imaging,” Eur. J.o Cancer 38, 2173–88 (2002).
    [Crossref]
  29. V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893–895 (2001).
    [Crossref]
  30. M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography,” Proc. Nat. Acad. Sci. Am. 99, 9619–9624 (2002).
    [Crossref]
  31. A. B. Milstein, J.J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, “Fluorescence optical diffusion tomography using multiple-frequency data,” J. Opt. Soc. Am. A 21, 1035–1049 (2004).
    [Crossref]
  32. X. Li, “Fluorescence and diffusive wave diffraction tomographic probes in turbid media,” PhD University of Pennsylvania (1996).
  33. M. O’Leary, “Imaging with diffuse photon density waves,” PhD University of Pennsylvania (1996).
  34. E. Hillman, “Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications,” PhD University College London (2002).
  35. A. Liebert, H. Wabnitz, D. Grosenick, M. Moller, R. Macdonald, and H. Rinnerberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42, 5785–5792 (2003).
    [Crossref] [PubMed]
  36. R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am A 11, 2727–41 (1994).
    [Crossref]
  37. R. Gordon, R. Bender, and G. Herman, “Algebraic reconstruction techniques (ART) for the three dimensional electron microscopy and X-Ray photography,” J. Theoret. Biol. 69, 471–482 (1970).
    [Crossref]
  38. A. Kak and M. Slaney, “Computerized tomographic Imaging”, IEEE Press, N-Y (1987).
  39. D. Ros, C. Falcon, I. Juvells, and J. Pavia, “The influence of a relaxation parameter on SPECT iterative reconstruction algorithms,” Phys. Med. Biol. 41, 925–937 (1996).
    [Crossref] [PubMed]
  40. X. Intes, V. Ntziachristos, J. Culver, A. G. Yodh, and B. Chance, “Projection access order in Algebraic Reconstruction Techniques for Diffuse Optical Tomography,” Phys. Med. Biol. 47, N1–N10 (2002).
    [Crossref] [PubMed]
  41. E. Graves, J. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21, 231–241 (2004).
    [Crossref]

2005 (1)

X. Intes and B. Chance, “Non-PET Functional Imaging Techniques Optical,” Clin. No. Am. 43, 221–234 (2005).

2004 (7)

D. Grosenick, H. Wabnitz, K. Moesta, J. Mucke, M. Moller, C. Stroszczunski, J. Stobel, B. Wassermann, P. Schlag, and H. Rinnerberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys Med. Biol. 49, 1165–1181 (2004).
[Crossref] [PubMed]

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. -Jean, F. Lesage, D. Hall, D. A. Boas, and M. Polyzos, “Time-Domain Optical Mammography Softscan®: Initial Results on Detection and Characterization of Breast Tumors”, Proc. SPIE 5578, 188–197 (2004).
[Crossref]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J Biomed Opt. 9, 230–238 (2004).
[Crossref] [PubMed]

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys Med Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

G. Zheng, Y. Chen, X. Intes, B. Chance, and J. Glickson, “Contrast-Enhanced NIR Optical Imaging for subsurface cancer detection,” J. Porphyrin and Phthalocyanines 8, 1106–1118 (2004).
[Crossref]

A. B. Milstein, J.J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, “Fluorescence optical diffusion tomography using multiple-frequency data,” J. Opt. Soc. Am. A 21, 1035–1049 (2004).
[Crossref]

E. Graves, J. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21, 231–241 (2004).
[Crossref]

2003 (7)

A. Liebert, H. Wabnitz, D. Grosenick, M. Moller, R. Macdonald, and H. Rinnerberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42, 5785–5792 (2003).
[Crossref] [PubMed]

J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7, 626–634 (2003).
[Crossref] [PubMed]

Y. Chen, G. Zheng, Z. Zhang, D. Blessington, M. Zhang, and H. Li, et al., “Metabolism Enhanced Tumor Localization by Fluorescence Imaging: In Vivo Animal Studies,” Opt. Lett. 28, 2070–2072 (2003).
[Crossref] [PubMed]

V. Quaresima, R. Lepanto, and M. Ferrari, “The use of near infrared spectroscopy in sports medicine,” J. Sports Med. Phys. Fitness 43, 1–13 (2003).
[PubMed]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30, 1039–1047 (2003).
[Crossref] [PubMed]

Y. Chen, D. Tailor, X. Intes, and B. Chance, “Quantitative correlation between Near-Infrared spectroscopy (NIRS) and magnetic resonance imaging (MRI) on rat brain oxygenation modulation,” Phys. Med. Biol. 48, 417–427 (2003).
[Crossref] [PubMed]

Y. Chen, C. Mu, X. Intes, D. Blessington, and B. Chance, “Frequency domain phase cancellation instrument for fast and accurate localization of fluorescent heterogeneity,” Rev. Sci. Instrum. 74, 3466–3473 (2003).
[Crossref]

2002 (8)

H. Jiang, N. Iftimia, J. Eggert, L. Fajardo, and K. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194 (2002).
[Crossref] [PubMed]

Y. Lin, G. Lech, S. Nioka, X. Intes, and B. Chance, “Noninvasive, low-noise, fast imaging of blood volume and deoxygenation changes in muscles using light-emitting diode continuous-wave imager,” Rev. Sci. Instrum. 73, 3065–3074 (2002).
[Crossref]

G. Strangman, D. A. Boas, and J. Sutton, “Non-invasive neuroimaging using Near-Infrared light,” Biol. Psychiatry 52, 679–693 (2002).
[Crossref] [PubMed]

X. Intes, Y. Chen, X. Li, and B. Chance, “Detection limit enhancement of fluorescent heterogeneities in turbid media by dual-interfering excitation,” Appl. Opt. 41, 3999–4007 (2002).
[Crossref] [PubMed]

J. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, “Small animal imaging: current technology and perspectives for oncological imaging,” Eur. J.o Cancer 38, 2173–88 (2002).
[Crossref]

K. Licha, “Contrast agents for optical imaging,” Topics in Current Chemistry 222, 1–29 (2002).
[Crossref]

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography,” Proc. Nat. Acad. Sci. Am. 99, 9619–9624 (2002).
[Crossref]

X. Intes, V. Ntziachristos, J. Culver, A. G. Yodh, and B. Chance, “Projection access order in Algebraic Reconstruction Techniques for Diffuse Optical Tomography,” Phys. Med. Biol. 47, N1–N10 (2002).
[Crossref] [PubMed]

2001 (2)

2000 (3)

M. Stankovic, D. Maulik, W. Rosenfeld, P. Stubblefield, A. Kofinas, and E. Gratton, et al., “Role of frequency domain optical spectroscopy in the detection of neonatal brain hemorrhage- a newborn piglet study,” J. Matern. Fetal Med. 9, 142–149 (2000).
[Crossref] [PubMed]

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, and T. Pham, et al., “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[Crossref] [PubMed]

S. Achilefu, R. Dorshow, J. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in-vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[Crossref] [PubMed]

1999 (2)

R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, “In vivo imaging with protease-activated near-infrared fluorescent probes,” Nat. Biotech. 17, 375–378 (1999).
[Crossref]

S. Colak, M. van der Mark, G. Hooft, J. Hoogenraad, E. van der Linden, and F. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quatum Electron. 5, 1143–1158 (1999).
[Crossref]

1997 (1)

M. Franceschini, K. Moesta, S. Fantini, G. Gaida, E. Gratton, and H. Jess, et al., “Frequency-domain techniques enhance optical mammography: Initial clinical results,” Proc. Nat. Acad. Sci. Am. 94, 6468–6473 (1997).
[Crossref]

1996 (2)

D. Ros, C. Falcon, I. Juvells, and J. Pavia, “The influence of a relaxation parameter on SPECT iterative reconstruction algorithms,” Phys. Med. Biol. 41, 925–937 (1996).
[Crossref] [PubMed]

R. Weinberg, “How Does Cancer Arise,” Sci. Am. 275, 62–71 (1996).
[Crossref] [PubMed]

1995 (1)

A Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
[Crossref]

1994 (1)

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am A 11, 2727–41 (1994).
[Crossref]

1977 (1)

F. Jobsis, “Noninvasive infrared monitoring of cerebral and myocardial sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[Crossref] [PubMed]

1970 (1)

R. Gordon, R. Bender, and G. Herman, “Algebraic reconstruction techniques (ART) for the three dimensional electron microscopy and X-Ray photography,” J. Theoret. Biol. 69, 471–482 (1970).
[Crossref]

Achilefu, S.

J. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, “Small animal imaging: current technology and perspectives for oncological imaging,” Eur. J.o Cancer 38, 2173–88 (2002).
[Crossref]

S. Achilefu, R. Dorshow, J. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in-vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[Crossref] [PubMed]

Arridge, S. R.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys Med Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

Austin, T.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys Med Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

Bender, R.

R. Gordon, R. Bender, and G. Herman, “Algebraic reconstruction techniques (ART) for the three dimensional electron microscopy and X-Ray photography,” J. Theoret. Biol. 69, 471–482 (1970).
[Crossref]

Bevilacqua, F.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J Biomed Opt. 9, 230–238 (2004).
[Crossref] [PubMed]

Blessington, D.

Y. Chen, C. Mu, X. Intes, D. Blessington, and B. Chance, “Frequency domain phase cancellation instrument for fast and accurate localization of fluorescent heterogeneity,” Rev. Sci. Instrum. 74, 3466–3473 (2003).
[Crossref]

Y. Chen, G. Zheng, Z. Zhang, D. Blessington, M. Zhang, and H. Li, et al., “Metabolism Enhanced Tumor Localization by Fluorescence Imaging: In Vivo Animal Studies,” Opt. Lett. 28, 2070–2072 (2003).
[Crossref] [PubMed]

Boas, D. A.

A. B. Milstein, J.J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, “Fluorescence optical diffusion tomography using multiple-frequency data,” J. Opt. Soc. Am. A 21, 1035–1049 (2004).
[Crossref]

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. -Jean, F. Lesage, D. Hall, D. A. Boas, and M. Polyzos, “Time-Domain Optical Mammography Softscan®: Initial Results on Detection and Characterization of Breast Tumors”, Proc. SPIE 5578, 188–197 (2004).
[Crossref]

G. Strangman, D. A. Boas, and J. Sutton, “Non-invasive neuroimaging using Near-Infrared light,” Biol. Psychiatry 52, 679–693 (2002).
[Crossref] [PubMed]

Bogdanov, A.

R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, “In vivo imaging with protease-activated near-infrared fluorescent probes,” Nat. Biotech. 17, 375–378 (1999).
[Crossref]

Bouman, C. A.

Bugaj, J.

S. Achilefu, R. Dorshow, J. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in-vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[Crossref] [PubMed]

Butler, J.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J Biomed Opt. 9, 230–238 (2004).
[Crossref] [PubMed]

Cerussi, A.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, and T. Pham, et al., “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[Crossref] [PubMed]

Cerussi, A. E.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J Biomed Opt. 9, 230–238 (2004).
[Crossref] [PubMed]

Chance, B.

X. Intes and B. Chance, “Non-PET Functional Imaging Techniques Optical,” Clin. No. Am. 43, 221–234 (2005).

G. Zheng, Y. Chen, X. Intes, B. Chance, and J. Glickson, “Contrast-Enhanced NIR Optical Imaging for subsurface cancer detection,” J. Porphyrin and Phthalocyanines 8, 1106–1118 (2004).
[Crossref]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30, 1039–1047 (2003).
[Crossref] [PubMed]

Y. Chen, D. Tailor, X. Intes, and B. Chance, “Quantitative correlation between Near-Infrared spectroscopy (NIRS) and magnetic resonance imaging (MRI) on rat brain oxygenation modulation,” Phys. Med. Biol. 48, 417–427 (2003).
[Crossref] [PubMed]

Y. Chen, C. Mu, X. Intes, D. Blessington, and B. Chance, “Frequency domain phase cancellation instrument for fast and accurate localization of fluorescent heterogeneity,” Rev. Sci. Instrum. 74, 3466–3473 (2003).
[Crossref]

Y. Lin, G. Lech, S. Nioka, X. Intes, and B. Chance, “Noninvasive, low-noise, fast imaging of blood volume and deoxygenation changes in muscles using light-emitting diode continuous-wave imager,” Rev. Sci. Instrum. 73, 3065–3074 (2002).
[Crossref]

X. Intes, V. Ntziachristos, J. Culver, A. G. Yodh, and B. Chance, “Projection access order in Algebraic Reconstruction Techniques for Diffuse Optical Tomography,” Phys. Med. Biol. 47, N1–N10 (2002).
[Crossref] [PubMed]

X. Intes, Y. Chen, X. Li, and B. Chance, “Detection limit enhancement of fluorescent heterogeneities in turbid media by dual-interfering excitation,” Appl. Opt. 41, 3999–4007 (2002).
[Crossref] [PubMed]

A Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
[Crossref]

Chen, Y.

G. Zheng, Y. Chen, X. Intes, B. Chance, and J. Glickson, “Contrast-Enhanced NIR Optical Imaging for subsurface cancer detection,” J. Porphyrin and Phthalocyanines 8, 1106–1118 (2004).
[Crossref]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30, 1039–1047 (2003).
[Crossref] [PubMed]

Y. Chen, C. Mu, X. Intes, D. Blessington, and B. Chance, “Frequency domain phase cancellation instrument for fast and accurate localization of fluorescent heterogeneity,” Rev. Sci. Instrum. 74, 3466–3473 (2003).
[Crossref]

Y. Chen, D. Tailor, X. Intes, and B. Chance, “Quantitative correlation between Near-Infrared spectroscopy (NIRS) and magnetic resonance imaging (MRI) on rat brain oxygenation modulation,” Phys. Med. Biol. 48, 417–427 (2003).
[Crossref] [PubMed]

Y. Chen, G. Zheng, Z. Zhang, D. Blessington, M. Zhang, and H. Li, et al., “Metabolism Enhanced Tumor Localization by Fluorescence Imaging: In Vivo Animal Studies,” Opt. Lett. 28, 2070–2072 (2003).
[Crossref] [PubMed]

X. Intes, Y. Chen, X. Li, and B. Chance, “Detection limit enhancement of fluorescent heterogeneities in turbid media by dual-interfering excitation,” Appl. Opt. 41, 3999–4007 (2002).
[Crossref] [PubMed]

Colak, S.

S. Colak, M. van der Mark, G. Hooft, J. Hoogenraad, E. van der Linden, and F. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quatum Electron. 5, 1143–1158 (1999).
[Crossref]

Culver, J.

E. Graves, J. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21, 231–241 (2004).
[Crossref]

X. Intes, V. Ntziachristos, J. Culver, A. G. Yodh, and B. Chance, “Projection access order in Algebraic Reconstruction Techniques for Diffuse Optical Tomography,” Phys. Med. Biol. 47, N1–N10 (2002).
[Crossref] [PubMed]

Delpy, D. T.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys Med Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

Djeziri, S.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. -Jean, F. Lesage, D. Hall, D. A. Boas, and M. Polyzos, “Time-Domain Optical Mammography Softscan®: Initial Results on Detection and Characterization of Breast Tumors”, Proc. SPIE 5578, 188–197 (2004).
[Crossref]

Dorshow, R.

S. Achilefu, R. Dorshow, J. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in-vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[Crossref] [PubMed]

Eggert, J.

H. Jiang, N. Iftimia, J. Eggert, L. Fajardo, and K. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194 (2002).
[Crossref] [PubMed]

Eppstein, M. J.

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography,” Proc. Nat. Acad. Sci. Am. 99, 9619–9624 (2002).
[Crossref]

Espinoza, J.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, and T. Pham, et al., “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[Crossref] [PubMed]

Everdell, N.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys Med Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

Fajardo, L.

H. Jiang, N. Iftimia, J. Eggert, L. Fajardo, and K. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194 (2002).
[Crossref] [PubMed]

Falcon, C.

D. Ros, C. Falcon, I. Juvells, and J. Pavia, “The influence of a relaxation parameter on SPECT iterative reconstruction algorithms,” Phys. Med. Biol. 41, 925–937 (1996).
[Crossref] [PubMed]

Fantini, S.

M. Franceschini, K. Moesta, S. Fantini, G. Gaida, E. Gratton, and H. Jess, et al., “Frequency-domain techniques enhance optical mammography: Initial clinical results,” Proc. Nat. Acad. Sci. Am. 94, 6468–6473 (1997).
[Crossref]

Feng, T.

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am A 11, 2727–41 (1994).
[Crossref]

Ferrari, M.

V. Quaresima, R. Lepanto, and M. Ferrari, “The use of near infrared spectroscopy in sports medicine,” J. Sports Med. Phys. Fitness 43, 1–13 (2003).
[PubMed]

Franceschini, M.

M. Franceschini, K. Moesta, S. Fantini, G. Gaida, E. Gratton, and H. Jess, et al., “Frequency-domain techniques enhance optical mammography: Initial clinical results,” Proc. Nat. Acad. Sci. Am. 94, 6468–6473 (1997).
[Crossref]

Frangioni, J. V.

J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7, 626–634 (2003).
[Crossref] [PubMed]

Gaida, G.

M. Franceschini, K. Moesta, S. Fantini, G. Gaida, E. Gratton, and H. Jess, et al., “Frequency-domain techniques enhance optical mammography: Initial clinical results,” Proc. Nat. Acad. Sci. Am. 94, 6468–6473 (1997).
[Crossref]

Garbow, J. R.

J. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, “Small animal imaging: current technology and perspectives for oncological imaging,” Eur. J.o Cancer 38, 2173–88 (2002).
[Crossref]

Gibson, A.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys Med Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

Glickson, J.

G. Zheng, Y. Chen, X. Intes, B. Chance, and J. Glickson, “Contrast-Enhanced NIR Optical Imaging for subsurface cancer detection,” J. Porphyrin and Phthalocyanines 8, 1106–1118 (2004).
[Crossref]

Godavarty, A.

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography,” Proc. Nat. Acad. Sci. Am. 99, 9619–9624 (2002).
[Crossref]

Gordon, R.

R. Gordon, R. Bender, and G. Herman, “Algebraic reconstruction techniques (ART) for the three dimensional electron microscopy and X-Ray photography,” J. Theoret. Biol. 69, 471–482 (1970).
[Crossref]

Gratton, E.

M. Stankovic, D. Maulik, W. Rosenfeld, P. Stubblefield, A. Kofinas, and E. Gratton, et al., “Role of frequency domain optical spectroscopy in the detection of neonatal brain hemorrhage- a newborn piglet study,” J. Matern. Fetal Med. 9, 142–149 (2000).
[Crossref] [PubMed]

M. Franceschini, K. Moesta, S. Fantini, G. Gaida, E. Gratton, and H. Jess, et al., “Frequency-domain techniques enhance optical mammography: Initial clinical results,” Proc. Nat. Acad. Sci. Am. 94, 6468–6473 (1997).
[Crossref]

Graves, E.

Grosenick, D.

D. Grosenick, H. Wabnitz, K. Moesta, J. Mucke, M. Moller, C. Stroszczunski, J. Stobel, B. Wassermann, P. Schlag, and H. Rinnerberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys Med. Biol. 49, 1165–1181 (2004).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Moller, R. Macdonald, and H. Rinnerberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42, 5785–5792 (2003).
[Crossref] [PubMed]

Hall, D.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. -Jean, F. Lesage, D. Hall, D. A. Boas, and M. Polyzos, “Time-Domain Optical Mammography Softscan®: Initial Results on Detection and Characterization of Breast Tumors”, Proc. SPIE 5578, 188–197 (2004).
[Crossref]

Haskell, R. C.

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am A 11, 2727–41 (1994).
[Crossref]

Hawrysz, D. J.

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography,” Proc. Nat. Acad. Sci. Am. 99, 9619–9624 (2002).
[Crossref]

Hebden, J. C.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys Med Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

Herman, G.

R. Gordon, R. Bender, and G. Herman, “Algebraic reconstruction techniques (ART) for the three dimensional electron microscopy and X-Ray photography,” J. Theoret. Biol. 69, 471–482 (1970).
[Crossref]

Hillman, E.

E. Hillman, “Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications,” PhD University College London (2002).

Hooft, G.

S. Colak, M. van der Mark, G. Hooft, J. Hoogenraad, E. van der Linden, and F. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quatum Electron. 5, 1143–1158 (1999).
[Crossref]

Hoogenraad, J.

S. Colak, M. van der Mark, G. Hooft, J. Hoogenraad, E. van der Linden, and F. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quatum Electron. 5, 1143–1158 (1999).
[Crossref]

Hsiang, D.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J Biomed Opt. 9, 230–238 (2004).
[Crossref] [PubMed]

Ichalalene, Z.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. -Jean, F. Lesage, D. Hall, D. A. Boas, and M. Polyzos, “Time-Domain Optical Mammography Softscan®: Initial Results on Detection and Characterization of Breast Tumors”, Proc. SPIE 5578, 188–197 (2004).
[Crossref]

Iftimia, N.

H. Jiang, N. Iftimia, J. Eggert, L. Fajardo, and K. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194 (2002).
[Crossref] [PubMed]

Intes, X.

X. Intes and B. Chance, “Non-PET Functional Imaging Techniques Optical,” Clin. No. Am. 43, 221–234 (2005).

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. -Jean, F. Lesage, D. Hall, D. A. Boas, and M. Polyzos, “Time-Domain Optical Mammography Softscan®: Initial Results on Detection and Characterization of Breast Tumors”, Proc. SPIE 5578, 188–197 (2004).
[Crossref]

G. Zheng, Y. Chen, X. Intes, B. Chance, and J. Glickson, “Contrast-Enhanced NIR Optical Imaging for subsurface cancer detection,” J. Porphyrin and Phthalocyanines 8, 1106–1118 (2004).
[Crossref]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30, 1039–1047 (2003).
[Crossref] [PubMed]

Y. Chen, D. Tailor, X. Intes, and B. Chance, “Quantitative correlation between Near-Infrared spectroscopy (NIRS) and magnetic resonance imaging (MRI) on rat brain oxygenation modulation,” Phys. Med. Biol. 48, 417–427 (2003).
[Crossref] [PubMed]

Y. Chen, C. Mu, X. Intes, D. Blessington, and B. Chance, “Frequency domain phase cancellation instrument for fast and accurate localization of fluorescent heterogeneity,” Rev. Sci. Instrum. 74, 3466–3473 (2003).
[Crossref]

Y. Lin, G. Lech, S. Nioka, X. Intes, and B. Chance, “Noninvasive, low-noise, fast imaging of blood volume and deoxygenation changes in muscles using light-emitting diode continuous-wave imager,” Rev. Sci. Instrum. 73, 3065–3074 (2002).
[Crossref]

X. Intes, V. Ntziachristos, J. Culver, A. G. Yodh, and B. Chance, “Projection access order in Algebraic Reconstruction Techniques for Diffuse Optical Tomography,” Phys. Med. Biol. 47, N1–N10 (2002).
[Crossref] [PubMed]

X. Intes, Y. Chen, X. Li, and B. Chance, “Detection limit enhancement of fluorescent heterogeneities in turbid media by dual-interfering excitation,” Appl. Opt. 41, 3999–4007 (2002).
[Crossref] [PubMed]

Jakubowski, D. B.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J Biomed Opt. 9, 230–238 (2004).
[Crossref] [PubMed]

-Jean, P. St.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. -Jean, F. Lesage, D. Hall, D. A. Boas, and M. Polyzos, “Time-Domain Optical Mammography Softscan®: Initial Results on Detection and Characterization of Breast Tumors”, Proc. SPIE 5578, 188–197 (2004).
[Crossref]

Jess, H.

M. Franceschini, K. Moesta, S. Fantini, G. Gaida, E. Gratton, and H. Jess, et al., “Frequency-domain techniques enhance optical mammography: Initial clinical results,” Proc. Nat. Acad. Sci. Am. 94, 6468–6473 (1997).
[Crossref]

Jiang, H.

H. Jiang, N. Iftimia, J. Eggert, L. Fajardo, and K. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194 (2002).
[Crossref] [PubMed]

Jobsis, F.

F. Jobsis, “Noninvasive infrared monitoring of cerebral and myocardial sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[Crossref] [PubMed]

Juvells, I.

D. Ros, C. Falcon, I. Juvells, and J. Pavia, “The influence of a relaxation parameter on SPECT iterative reconstruction algorithms,” Phys. Med. Biol. 41, 925–937 (1996).
[Crossref] [PubMed]

Kak, A.

A. Kak and M. Slaney, “Computerized tomographic Imaging”, IEEE Press, N-Y (1987).

Klove, K.

H. Jiang, N. Iftimia, J. Eggert, L. Fajardo, and K. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194 (2002).
[Crossref] [PubMed]

Kofinas, A.

M. Stankovic, D. Maulik, W. Rosenfeld, P. Stubblefield, A. Kofinas, and E. Gratton, et al., “Role of frequency domain optical spectroscopy in the detection of neonatal brain hemorrhage- a newborn piglet study,” J. Matern. Fetal Med. 9, 142–149 (2000).
[Crossref] [PubMed]

Kuijpers, F.

S. Colak, M. van der Mark, G. Hooft, J. Hoogenraad, E. van der Linden, and F. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quatum Electron. 5, 1143–1158 (1999).
[Crossref]

Laforest, R.

J. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, “Small animal imaging: current technology and perspectives for oncological imaging,” Eur. J.o Cancer 38, 2173–88 (2002).
[Crossref]

Lanning, R.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, and T. Pham, et al., “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[Crossref] [PubMed]

Lech, G.

Y. Lin, G. Lech, S. Nioka, X. Intes, and B. Chance, “Noninvasive, low-noise, fast imaging of blood volume and deoxygenation changes in muscles using light-emitting diode continuous-wave imager,” Rev. Sci. Instrum. 73, 3065–3074 (2002).
[Crossref]

Lepanto, R.

V. Quaresima, R. Lepanto, and M. Ferrari, “The use of near infrared spectroscopy in sports medicine,” J. Sports Med. Phys. Fitness 43, 1–13 (2003).
[PubMed]

Lesage, F.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. -Jean, F. Lesage, D. Hall, D. A. Boas, and M. Polyzos, “Time-Domain Optical Mammography Softscan®: Initial Results on Detection and Characterization of Breast Tumors”, Proc. SPIE 5578, 188–197 (2004).
[Crossref]

Lewis, J.

J. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, “Small animal imaging: current technology and perspectives for oncological imaging,” Eur. J.o Cancer 38, 2173–88 (2002).
[Crossref]

Li, H.

Li, X.

Licha, K.

K. Licha, “Contrast agents for optical imaging,” Topics in Current Chemistry 222, 1–29 (2002).
[Crossref]

Liebert, A.

Lin, Y.

Y. Lin, G. Lech, S. Nioka, X. Intes, and B. Chance, “Noninvasive, low-noise, fast imaging of blood volume and deoxygenation changes in muscles using light-emitting diode continuous-wave imager,” Rev. Sci. Instrum. 73, 3065–3074 (2002).
[Crossref]

Macdonald, R.

Mahmood, U.

R. Weissleder and U. Mahmood, “Molecular imaging,” Radiology 219, 316–333 (2001).
[PubMed]

R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, “In vivo imaging with protease-activated near-infrared fluorescent probes,” Nat. Biotech. 17, 375–378 (1999).
[Crossref]

Maulik, D.

M. Stankovic, D. Maulik, W. Rosenfeld, P. Stubblefield, A. Kofinas, and E. Gratton, et al., “Role of frequency domain optical spectroscopy in the detection of neonatal brain hemorrhage- a newborn piglet study,” J. Matern. Fetal Med. 9, 142–149 (2000).
[Crossref] [PubMed]

McAdams, M. S.

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am A 11, 2727–41 (1994).
[Crossref]

Meek, J. H.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys Med Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

Millane, R. P.

Milstein, A. B.

Mincu, N.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. -Jean, F. Lesage, D. Hall, D. A. Boas, and M. Polyzos, “Time-Domain Optical Mammography Softscan®: Initial Results on Detection and Characterization of Breast Tumors”, Proc. SPIE 5578, 188–197 (2004).
[Crossref]

Moesta, K.

D. Grosenick, H. Wabnitz, K. Moesta, J. Mucke, M. Moller, C. Stroszczunski, J. Stobel, B. Wassermann, P. Schlag, and H. Rinnerberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys Med. Biol. 49, 1165–1181 (2004).
[Crossref] [PubMed]

M. Franceschini, K. Moesta, S. Fantini, G. Gaida, E. Gratton, and H. Jess, et al., “Frequency-domain techniques enhance optical mammography: Initial clinical results,” Proc. Nat. Acad. Sci. Am. 94, 6468–6473 (1997).
[Crossref]

Moller, M.

D. Grosenick, H. Wabnitz, K. Moesta, J. Mucke, M. Moller, C. Stroszczunski, J. Stobel, B. Wassermann, P. Schlag, and H. Rinnerberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys Med. Biol. 49, 1165–1181 (2004).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Moller, R. Macdonald, and H. Rinnerberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42, 5785–5792 (2003).
[Crossref] [PubMed]

Mu, C.

Y. Chen, C. Mu, X. Intes, D. Blessington, and B. Chance, “Frequency domain phase cancellation instrument for fast and accurate localization of fluorescent heterogeneity,” Rev. Sci. Instrum. 74, 3466–3473 (2003).
[Crossref]

Mucke, J.

D. Grosenick, H. Wabnitz, K. Moesta, J. Mucke, M. Moller, C. Stroszczunski, J. Stobel, B. Wassermann, P. Schlag, and H. Rinnerberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys Med. Biol. 49, 1165–1181 (2004).
[Crossref] [PubMed]

Nioka, S.

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30, 1039–1047 (2003).
[Crossref] [PubMed]

Y. Lin, G. Lech, S. Nioka, X. Intes, and B. Chance, “Noninvasive, low-noise, fast imaging of blood volume and deoxygenation changes in muscles using light-emitting diode continuous-wave imager,” Rev. Sci. Instrum. 73, 3065–3074 (2002).
[Crossref]

Ntziachristos, V.

O’Leary, M.

M. O’Leary, “Imaging with diffuse photon density waves,” PhD University of Pennsylvania (1996).

Oh, S.

Pavia, J.

D. Ros, C. Falcon, I. Juvells, and J. Pavia, “The influence of a relaxation parameter on SPECT iterative reconstruction algorithms,” Phys. Med. Biol. 41, 925–937 (1996).
[Crossref] [PubMed]

Pham, T.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, and T. Pham, et al., “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[Crossref] [PubMed]

Polyzos, M.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. -Jean, F. Lesage, D. Hall, D. A. Boas, and M. Polyzos, “Time-Domain Optical Mammography Softscan®: Initial Results on Detection and Characterization of Breast Tumors”, Proc. SPIE 5578, 188–197 (2004).
[Crossref]

Quaresima, V.

V. Quaresima, R. Lepanto, and M. Ferrari, “The use of near infrared spectroscopy in sports medicine,” J. Sports Med. Phys. Fitness 43, 1–13 (2003).
[PubMed]

Rajagopalan, R.

S. Achilefu, R. Dorshow, J. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in-vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[Crossref] [PubMed]

Rinnerberg, H.

D. Grosenick, H. Wabnitz, K. Moesta, J. Mucke, M. Moller, C. Stroszczunski, J. Stobel, B. Wassermann, P. Schlag, and H. Rinnerberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys Med. Biol. 49, 1165–1181 (2004).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Moller, R. Macdonald, and H. Rinnerberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42, 5785–5792 (2003).
[Crossref] [PubMed]

Ripoll, J.

E. Graves, J. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21, 231–241 (2004).
[Crossref]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30, 1039–1047 (2003).
[Crossref] [PubMed]

Ros, D.

D. Ros, C. Falcon, I. Juvells, and J. Pavia, “The influence of a relaxation parameter on SPECT iterative reconstruction algorithms,” Phys. Med. Biol. 41, 925–937 (1996).
[Crossref] [PubMed]

Rosenfeld, W.

M. Stankovic, D. Maulik, W. Rosenfeld, P. Stubblefield, A. Kofinas, and E. Gratton, et al., “Role of frequency domain optical spectroscopy in the detection of neonatal brain hemorrhage- a newborn piglet study,” J. Matern. Fetal Med. 9, 142–149 (2000).
[Crossref] [PubMed]

Schlag, P.

D. Grosenick, H. Wabnitz, K. Moesta, J. Mucke, M. Moller, C. Stroszczunski, J. Stobel, B. Wassermann, P. Schlag, and H. Rinnerberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys Med. Biol. 49, 1165–1181 (2004).
[Crossref] [PubMed]

Sevick-Muraca, E. M.

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography,” Proc. Nat. Acad. Sci. Am. 99, 9619–9624 (2002).
[Crossref]

Shah, N.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J Biomed Opt. 9, 230–238 (2004).
[Crossref] [PubMed]

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, and T. Pham, et al., “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[Crossref] [PubMed]

Slaney, M.

A. Kak and M. Slaney, “Computerized tomographic Imaging”, IEEE Press, N-Y (1987).

Stankovic, M.

M. Stankovic, D. Maulik, W. Rosenfeld, P. Stubblefield, A. Kofinas, and E. Gratton, et al., “Role of frequency domain optical spectroscopy in the detection of neonatal brain hemorrhage- a newborn piglet study,” J. Matern. Fetal Med. 9, 142–149 (2000).
[Crossref] [PubMed]

Stobel, J.

D. Grosenick, H. Wabnitz, K. Moesta, J. Mucke, M. Moller, C. Stroszczunski, J. Stobel, B. Wassermann, P. Schlag, and H. Rinnerberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys Med. Biol. 49, 1165–1181 (2004).
[Crossref] [PubMed]

Stott, J.J.

Strangman, G.

G. Strangman, D. A. Boas, and J. Sutton, “Non-invasive neuroimaging using Near-Infrared light,” Biol. Psychiatry 52, 679–693 (2002).
[Crossref] [PubMed]

Stroszczunski, C.

D. Grosenick, H. Wabnitz, K. Moesta, J. Mucke, M. Moller, C. Stroszczunski, J. Stobel, B. Wassermann, P. Schlag, and H. Rinnerberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys Med. Biol. 49, 1165–1181 (2004).
[Crossref] [PubMed]

Stubblefield, P.

M. Stankovic, D. Maulik, W. Rosenfeld, P. Stubblefield, A. Kofinas, and E. Gratton, et al., “Role of frequency domain optical spectroscopy in the detection of neonatal brain hemorrhage- a newborn piglet study,” J. Matern. Fetal Med. 9, 142–149 (2000).
[Crossref] [PubMed]

Sutton, J.

G. Strangman, D. A. Boas, and J. Sutton, “Non-invasive neuroimaging using Near-Infrared light,” Biol. Psychiatry 52, 679–693 (2002).
[Crossref] [PubMed]

Svaasand, L. O.

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am A 11, 2727–41 (1994).
[Crossref]

Tailor, D.

Y. Chen, D. Tailor, X. Intes, and B. Chance, “Quantitative correlation between Near-Infrared spectroscopy (NIRS) and magnetic resonance imaging (MRI) on rat brain oxygenation modulation,” Phys. Med. Biol. 48, 417–427 (2003).
[Crossref] [PubMed]

Tromberg, B.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, and T. Pham, et al., “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[Crossref] [PubMed]

Tromberg, B. J.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J Biomed Opt. 9, 230–238 (2004).
[Crossref] [PubMed]

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am A 11, 2727–41 (1994).
[Crossref]

Tsay, T.

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am A 11, 2727–41 (1994).
[Crossref]

Tung, C. H.

R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, “In vivo imaging with protease-activated near-infrared fluorescent probes,” Nat. Biotech. 17, 375–378 (1999).
[Crossref]

van der Linden, E.

S. Colak, M. van der Mark, G. Hooft, J. Hoogenraad, E. van der Linden, and F. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quatum Electron. 5, 1143–1158 (1999).
[Crossref]

van der Mark, M.

S. Colak, M. van der Mark, G. Hooft, J. Hoogenraad, E. van der Linden, and F. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quatum Electron. 5, 1143–1158 (1999).
[Crossref]

Wabnitz, H.

D. Grosenick, H. Wabnitz, K. Moesta, J. Mucke, M. Moller, C. Stroszczunski, J. Stobel, B. Wassermann, P. Schlag, and H. Rinnerberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys Med. Biol. 49, 1165–1181 (2004).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Moller, R. Macdonald, and H. Rinnerberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42, 5785–5792 (2003).
[Crossref] [PubMed]

Wang, Y.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. -Jean, F. Lesage, D. Hall, D. A. Boas, and M. Polyzos, “Time-Domain Optical Mammography Softscan®: Initial Results on Detection and Characterization of Breast Tumors”, Proc. SPIE 5578, 188–197 (2004).
[Crossref]

Wassermann, B.

D. Grosenick, H. Wabnitz, K. Moesta, J. Mucke, M. Moller, C. Stroszczunski, J. Stobel, B. Wassermann, P. Schlag, and H. Rinnerberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys Med. Biol. 49, 1165–1181 (2004).
[Crossref] [PubMed]

Webb, K. J.

Weinberg, R.

R. Weinberg, “How Does Cancer Arise,” Sci. Am. 275, 62–71 (1996).
[Crossref] [PubMed]

Weissleder, R.

Welch, M. J.

J. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, “Small animal imaging: current technology and perspectives for oncological imaging,” Eur. J.o Cancer 38, 2173–88 (2002).
[Crossref]

Wyatt, J. S.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys Med Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

Yodh, A

A Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
[Crossref]

Yodh, A. G.

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30, 1039–1047 (2003).
[Crossref] [PubMed]

X. Intes, V. Ntziachristos, J. Culver, A. G. Yodh, and B. Chance, “Projection access order in Algebraic Reconstruction Techniques for Diffuse Optical Tomography,” Phys. Med. Biol. 47, N1–N10 (2002).
[Crossref] [PubMed]

Yusof, R. M.

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys Med Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

Zhang, M.

Zhang, Z.

Zheng, G.

G. Zheng, Y. Chen, X. Intes, B. Chance, and J. Glickson, “Contrast-Enhanced NIR Optical Imaging for subsurface cancer detection,” J. Porphyrin and Phthalocyanines 8, 1106–1118 (2004).
[Crossref]

Y. Chen, G. Zheng, Z. Zhang, D. Blessington, M. Zhang, and H. Li, et al., “Metabolism Enhanced Tumor Localization by Fluorescence Imaging: In Vivo Animal Studies,” Opt. Lett. 28, 2070–2072 (2003).
[Crossref] [PubMed]

Acad. Radiol. (1)

H. Jiang, N. Iftimia, J. Eggert, L. Fajardo, and K. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194 (2002).
[Crossref] [PubMed]

Appl. Opt. (2)

Biol. Psychiatry (1)

G. Strangman, D. A. Boas, and J. Sutton, “Non-invasive neuroimaging using Near-Infrared light,” Biol. Psychiatry 52, 679–693 (2002).
[Crossref] [PubMed]

Clin. No. Am. (1)

X. Intes and B. Chance, “Non-PET Functional Imaging Techniques Optical,” Clin. No. Am. 43, 221–234 (2005).

Curr. Opin. Chem. Biol. (1)

J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7, 626–634 (2003).
[Crossref] [PubMed]

Eur. J.o Cancer (1)

J. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, “Small animal imaging: current technology and perspectives for oncological imaging,” Eur. J.o Cancer 38, 2173–88 (2002).
[Crossref]

IEEE J. Sel. Top. Quatum Electron. (1)

S. Colak, M. van der Mark, G. Hooft, J. Hoogenraad, E. van der Linden, and F. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quatum Electron. 5, 1143–1158 (1999).
[Crossref]

Invest. Radiol. (1)

S. Achilefu, R. Dorshow, J. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in-vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[Crossref] [PubMed]

J Biomed Opt. (1)

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J Biomed Opt. 9, 230–238 (2004).
[Crossref] [PubMed]

J. Matern. Fetal Med. (1)

M. Stankovic, D. Maulik, W. Rosenfeld, P. Stubblefield, A. Kofinas, and E. Gratton, et al., “Role of frequency domain optical spectroscopy in the detection of neonatal brain hemorrhage- a newborn piglet study,” J. Matern. Fetal Med. 9, 142–149 (2000).
[Crossref] [PubMed]

J. Opt. Soc. Am A (1)

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am A 11, 2727–41 (1994).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Porphyrin and Phthalocyanines (1)

G. Zheng, Y. Chen, X. Intes, B. Chance, and J. Glickson, “Contrast-Enhanced NIR Optical Imaging for subsurface cancer detection,” J. Porphyrin and Phthalocyanines 8, 1106–1118 (2004).
[Crossref]

J. Sports Med. Phys. Fitness (1)

V. Quaresima, R. Lepanto, and M. Ferrari, “The use of near infrared spectroscopy in sports medicine,” J. Sports Med. Phys. Fitness 43, 1–13 (2003).
[PubMed]

J. Theoret. Biol. (1)

R. Gordon, R. Bender, and G. Herman, “Algebraic reconstruction techniques (ART) for the three dimensional electron microscopy and X-Ray photography,” J. Theoret. Biol. 69, 471–482 (1970).
[Crossref]

Med. Phys. (1)

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30, 1039–1047 (2003).
[Crossref] [PubMed]

Nat. Biotech. (1)

R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, “In vivo imaging with protease-activated near-infrared fluorescent probes,” Nat. Biotech. 17, 375–378 (1999).
[Crossref]

Neoplasia (1)

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, and T. Pham, et al., “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys Med Biol. (1)

J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys Med Biol. 49, 1117–1130 (2004).
[Crossref] [PubMed]

Phys Med. Biol. (1)

D. Grosenick, H. Wabnitz, K. Moesta, J. Mucke, M. Moller, C. Stroszczunski, J. Stobel, B. Wassermann, P. Schlag, and H. Rinnerberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys Med. Biol. 49, 1165–1181 (2004).
[Crossref] [PubMed]

Phys. Med. Biol. (3)

Y. Chen, D. Tailor, X. Intes, and B. Chance, “Quantitative correlation between Near-Infrared spectroscopy (NIRS) and magnetic resonance imaging (MRI) on rat brain oxygenation modulation,” Phys. Med. Biol. 48, 417–427 (2003).
[Crossref] [PubMed]

D. Ros, C. Falcon, I. Juvells, and J. Pavia, “The influence of a relaxation parameter on SPECT iterative reconstruction algorithms,” Phys. Med. Biol. 41, 925–937 (1996).
[Crossref] [PubMed]

X. Intes, V. Ntziachristos, J. Culver, A. G. Yodh, and B. Chance, “Projection access order in Algebraic Reconstruction Techniques for Diffuse Optical Tomography,” Phys. Med. Biol. 47, N1–N10 (2002).
[Crossref] [PubMed]

Phys. Today (1)

A Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
[Crossref]

Proc. Nat. Acad. Sci. Am. (2)

M. Franceschini, K. Moesta, S. Fantini, G. Gaida, E. Gratton, and H. Jess, et al., “Frequency-domain techniques enhance optical mammography: Initial clinical results,” Proc. Nat. Acad. Sci. Am. 94, 6468–6473 (1997).
[Crossref]

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography,” Proc. Nat. Acad. Sci. Am. 99, 9619–9624 (2002).
[Crossref]

Proc. SPIE (1)

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St. -Jean, F. Lesage, D. Hall, D. A. Boas, and M. Polyzos, “Time-Domain Optical Mammography Softscan®: Initial Results on Detection and Characterization of Breast Tumors”, Proc. SPIE 5578, 188–197 (2004).
[Crossref]

Radiology (1)

R. Weissleder and U. Mahmood, “Molecular imaging,” Radiology 219, 316–333 (2001).
[PubMed]

Rev. Sci. Instrum. (2)

Y. Lin, G. Lech, S. Nioka, X. Intes, and B. Chance, “Noninvasive, low-noise, fast imaging of blood volume and deoxygenation changes in muscles using light-emitting diode continuous-wave imager,” Rev. Sci. Instrum. 73, 3065–3074 (2002).
[Crossref]

Y. Chen, C. Mu, X. Intes, D. Blessington, and B. Chance, “Frequency domain phase cancellation instrument for fast and accurate localization of fluorescent heterogeneity,” Rev. Sci. Instrum. 74, 3466–3473 (2003).
[Crossref]

Sci. Am. (1)

R. Weinberg, “How Does Cancer Arise,” Sci. Am. 275, 62–71 (1996).
[Crossref] [PubMed]

Science (1)

F. Jobsis, “Noninvasive infrared monitoring of cerebral and myocardial sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[Crossref] [PubMed]

Topics in Current Chemistry (1)

K. Licha, “Contrast agents for optical imaging,” Topics in Current Chemistry 222, 1–29 (2002).
[Crossref]

Other (4)

X. Li, “Fluorescence and diffusive wave diffraction tomographic probes in turbid media,” PhD University of Pennsylvania (1996).

M. O’Leary, “Imaging with diffuse photon density waves,” PhD University of Pennsylvania (1996).

E. Hillman, “Experimental and theoretical investigations of near infrared tomographic imaging methods and clinical applications,” PhD University College London (2002).

A. Kak and M. Slaney, “Computerized tomographic Imaging”, IEEE Press, N-Y (1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Typical TPSF and respective moments. The IFS curve corresponds to a typical instrument response function.

Fig. 2.
Fig. 2.

Configuration used for the simulations herein. The source (detectors) locations are depicted by red (blue) dots

Fig. 3.
Fig. 3.

Results of repartition of energy, meantimes and variance of 1,000 randomly generated noised TPSF.

Fig. 4.
Fig. 4.

Example of sensitivity matrices. a) and b) correspond respectively to m0λ2(r s,r d) and m0λ2(r s,r dm2λ2(r s,r d) for a 6cm thick slab with source-detector facing each other and a 0.1 µM background of Cy 7. c) and d) correspond to the same parameters for a 0.1 µM background of Cy 5.5. Last, e) and f) correspond to the same parameters for a 0.1 µM background of Cy 3B.

Fig. 5.
Fig. 5.

Reconstruction from synthetic data for Cy 7: a) 0th moment only, b) 0th, 1st and 2nd moments; Cy 5.5 : c) 0th moment only, d) 0th, 1st and 2nd moments; and Cy 3B: e) 0th moment only, f) 0th, 1st and 2nd moments. The quantitative values are expressed in µM.

Fig. 6.
Fig. 6.

Reconstruction from synthetic data for Cy 5.5 using all three moments noisy data.

Tables (3)

Tables Icon

Table 1. Parameters used in the simulations

Tables Icon

Table 2. Fluorochrome investigated herein.

Tables Icon

Table 3. Noise model used. The standard deviations are expressed in percent of the mean.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

1 v t Φ ( r , t ) D Δ 2 Φ ( r , t ) + μ a Φ ( r , t ) = S ( r , t )
t N ex ( r , t ) = 1 τ N ex ( r , t ) + σ · Φ λ 1 ( r , t ) [ N tot ( r , t ) 2 N ex ( r , t ) ]
N ex ( r , ω ) τ = σ · N tot ( r ) 1 i ω τ · Φ λ 1 ( r , ω )
Φ λ 2 ( r s , r d , ω ) = η volume N ex ( r , ω ) · Φ λ 2 ( r , r d , ω ) · d 3 r
Φ λ 2 ( r s , r d , ω ) = volume Φ λ 1 ( r s , r , ω ) · Q eff · N tot ( r ) 1 i ω τ · Φ λ 2 ( r , r d , ω ) · d 3 r
Φ λ 2 ( r s , r d , ω ) Φ 0 λ 1 ( r s , r d , ω ) = 1 Φ 0 λ 1 ( r s , r d , ω ) volume Φ 0 λ 1 ( r s , r , ω ) · Q eff · C tot ( r ) 1 i ω τ · Φ 0 λ 2 ( r , r d , ω ) · d 3 r
Φ λ 2 ( r s , r d , ω ) Φ 0 λ 1 ( r s , r d , ω ) = D λ 1 G λ 1 ( r s , r d , ω ) voxels 1 D λ 1 G λ 1 ( r s , r v , ω ) · Q eff · C tot ( r v ) 1 i ω τ · 1 D λ 2 G λ 2 ( r v , r d , ω ) · h 3
m k = t k = + t k · p ( t ) dt + p ( t ) dt
m 0 λ 2 ( r s , r d ) = Φ N λ 2 ( r s , r d , ω = 0 ) = voxels G λ 1 ( r s , r v , ω = 0 ) · G λ 2 ( r v , r d , ω = 0 ) G λ 1 ( r s , r d , ω = 0 ) × Q eff h 3 D λ 2 × C tot ( r v )
m 0 λ 2 ( r s , r d ) × m 1 λ 2 ( r s , r d ) = voxels { ( τ + r s r v + r s r d 2 . v μ a λ D λ r v r d 2 . v μ a D λ ) × G λ ( r s , r v , ω = 0 ) · G λ ( r v , r d , ω = 0 ) G λ ( r s , r d , ω = 0 ) × Q eff h 3 D λ × C tot ( r v ) }
m 0 λ 2 ( r s , r d ) · m 2 λ 2 ( r 2 , r d ) = voxels { ( τ 2 + r s r v + r s r d 4 . v 2 μ a λ μ a λ D λ + r v r d 4 . v 2 μ a λ μ a λ D λ + { τ + r s r v 2 . v μ a λ D λ + r v r d 2 . v μ a λ D λ } 2 t λ 2 ( r s , r d ) · { τ + r s r v + r v r d 2 . v μ a λ D λ r v r d 2 . v μ a λ D λ } ) × G λ ( r s , r v , ω = 0 ) · G λ ( r v , r d , ω = 0 ) G λ ( r s , r d , ω = 0 ) × Q eff h 2 D λ × C tot ( r v ) }
m 0 λ 2 ( r s 1 , r d 1 ) m 0 λ 2 ( r sm , r dm ) m 0 λ 2 ( r s 1 , r d 1 ) · m 1 λ 2 ( r s 1 , r d 1 ) m 0 λ 2 ( r sm , r dm ) · m 1 λ 2 ( r sm , r dm ) m 0 λ 2 ( r s 1 , r d 1 ) · m 2 λ 2 ( r s 1 , r d 1 ) m 0 λ 2 ( r sm , r dm ) · m 2 λ 2 ( r sm , r dm ) = W 11 m 0 λ 2 W ln m 0 λ 2 W ml m 0 λ 2 W mn m 0 λ 2 W 11 m 0 λ 2 · m 1 λ 2 W ln m 0 λ 2 · m 1 λ 2 W m 1 m 0 λ 2 · m 1 λ 2 W mn m 0 λ 2 · m 1 λ 2 W 11 m 0 λ 2 · m 2 λ 2 W ln m 0 λ 2 · m 2 λ 2 W m 1 m 0 λ 2 · m 2 λ 2 W mn m 0 λ 2 · m 2 λ 2 · C tot ( r vl ) C tot ( r vn )
b = A · x
x j ( k + 1 ) = x j ( k ) + ξ b i i a ij x j ( k ) i a ij a ij i a ij

Metrics