Abstract

Novel fixed-pattern phase modulation scheme is proposed to suppress the IFWM-induced ghost pulses in 40Gbps RZ optical transmission systems through destructing the interference of the IFWM components in symmetric patterns. More than 3dBm launch power margin is achieved. It is a cost-effective method to improve the performance of 40Gbps RZ systems due to greater nonlinearity tolerance.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. Kumar,et al, �??Intrachannel nonlinear penalties in dispersion-managed transmission systems�?? IEEE J. Sel. Top. Quantum Electron. 8, 626-631, (2002)
    [CrossRef]
  2. P. V. Mamyshev and N. A. Mamysheva, �??Pulse-overlapped dispersion-managed data transmission and intrachannel four-wave mixing,�?? Opt. Lett. 24, 1454�??1456, (1999)
    [CrossRef]
  3. M. J. Ablowitz and T. Hirooka, �??Resonant nonlinear intrachannel interactions in strongly dispersion-managed transmission systems,�?? Opt. Lett. 25, 1750�??1752, (2000)
    [CrossRef]
  4. Nikola Alic, Yeshaiahu Fainman, "Data-Dependent Phase Coding for Suppression of Ghost Pulses in Optical Fibers" IEEE Photon. Technol. Lett. 16, 1212�??1214, (2004)
    [CrossRef]
  5. X. Liu, X.Wei, A. H. Gnauck, C. Xu, and L. K.Wickham, �??Suppression of intrachannel four-wave-mixing-induced ghost pulses in high-speed transmissions by phase inversion between adjacent marker blocks,�?? Opt. Lett. 27, 1177�??1179, (2002)
    [CrossRef]
  6. P. J. Winzer, A. H. Gnauck, G. Raybon, S. Chandrasekhar, Y. Su, and J. Leuthold, �??40-Gb/s return-to-zero alternate-mark-inversion (RZ-AMI) transmission over 2000 km,�?? IEEE J. Sel. Top. Quantum Electron. 15, 766�??768, (2003)
  7. Shamil Appathurai, Vitaly Mikhailov, Robert I. Killey and Polina Bayvel, "Investigation of the Optimum Alternate-Phase RZ Modulation Format and Its Effectiveness in the Suppression of Intrachannel Nonlinear Distortion in 40-Gbit/s Transmission Over Standard Single-Mode Fiber" IEEE J. Sel. Top. Quantum Electron. 10, 239-249, (2004)
    [CrossRef]
  8. G.P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 2001)

IEEE J. Sel. Top. Quantum Electron. (3)

S. Kumar,et al, �??Intrachannel nonlinear penalties in dispersion-managed transmission systems�?? IEEE J. Sel. Top. Quantum Electron. 8, 626-631, (2002)
[CrossRef]

P. J. Winzer, A. H. Gnauck, G. Raybon, S. Chandrasekhar, Y. Su, and J. Leuthold, �??40-Gb/s return-to-zero alternate-mark-inversion (RZ-AMI) transmission over 2000 km,�?? IEEE J. Sel. Top. Quantum Electron. 15, 766�??768, (2003)

Shamil Appathurai, Vitaly Mikhailov, Robert I. Killey and Polina Bayvel, "Investigation of the Optimum Alternate-Phase RZ Modulation Format and Its Effectiveness in the Suppression of Intrachannel Nonlinear Distortion in 40-Gbit/s Transmission Over Standard Single-Mode Fiber" IEEE J. Sel. Top. Quantum Electron. 10, 239-249, (2004)
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Nikola Alic, Yeshaiahu Fainman, "Data-Dependent Phase Coding for Suppression of Ghost Pulses in Optical Fibers" IEEE Photon. Technol. Lett. 16, 1212�??1214, (2004)
[CrossRef]

Opt. Lett. (3)

Other (1)

G.P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 2001)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Scheme of the proposed fixed-pattern phase modulation transmitter

Fig.2 .
Fig.2 .

cheme of the proposed fixed phase pattern modulation

Fig. 3.
Fig. 3.

Calculated growth of ghost pulses as the average power in “zero” bit-slots against transmission distance

Fig. 4.
Fig. 4.

Q value against transmission distance with 3dBm of launch power (a) and the Q value against launch power after 800 km transmission (b)

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

φ m + n + φ m + q φ m + q = π + φ m n + φ m q φ m k
φ m + 1 + φ m + 1 φ m + 2 = π + φ m 1 + φ m 1 φ m 2
φ m + 2 + φ m 1 φ m + 1 = π + φ m 2 + φ m + 1 φ m 1
φ m + 2 + φ m + 1 φ m + 3 = π + φ m 2 + φ m 1 φ m 3
φ m + 3 + φ m 1 φ m 2 = π + φ m 3 + φ m + 1 φ m + 2
φ m + 3 + φ m 2 φ m + 1 = π + φ m 3 + φ m + 2 φ m 1
φ m 2 = π + φ m + 2
φ m + 3 + φ m 1 = φ m 3 + φ m + 1
φ i = π + φ i + 4

Metrics