Abstract

We report measurement of co- and cross-polarized Raman gain spectra at the zero-dispersion wavelength of standard dispersion-shifted fiber for detunings down to 0.17 THz (5.7cm-1) on both Stokes and anti-Stokes sides by using a photon-counting technique. This technique separates the Raman scattering from the four-photon scattering. In addition, the use of a pulsed pump eliminates Brillouin scattering and the use of a Sagnac loop rejects the pump photons that spectrally spread into the detection band due to self-phase-modulation.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. R.W. Hellwarth, J. Cherlow, and T. Yang, �??Origin and frequency dependence of nonlinear optical susceptibilities of glasses,�?? Phys. Rev. B 11, 964�??967 (1975).
    [CrossRef]
  2. D. J. Dougherty, F. X. Kärtner, H. A. Haus, and E. P. Ippen, �??Measurement of the Raman gain spectrum of optical fibers,�?? Opt. Lett. 20, 31�??33 (1995).
  3. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, �??All fiber photon-pair source for quantum communications,�?? IEEE Photon. Technol. Lett. 14, 983�??985 (2002).
    [CrossRef]
  4. Dogariu, J. Y. Fang, and L. J.Wang, �??Correlated photon generation for quantum cryptography,�?? NEC Research and Development 44, 294�??296 (2003).
  5. X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, �??All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,�?? Opt. Express 12, 3737�??3744 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3737.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-37.</a>
    [CrossRef]
  6. J. E. Sharping, J. Chen, X. Li, and P. Kumar, �??Quantum correlated twin photons from microstructured fibre,�?? Opt. Express 12, 3086-3094 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3086.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3086.</a>
    [CrossRef]
  7. H. Takesue and K. Inoue, �??Generation of polarization-entangled photon pairs and violation of Bell�??s inequality using spontaneous four-wave mixing in a fiber loop,�?? Phys. Rev. A 70, 031802 (2004).
    [CrossRef]
  8. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth and P. S. J. Russell, �??Photonic crystal fiber source of correlated photon pairs,�?? Opt. Express 13, 534�??544 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-534.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-534.</a>
    [CrossRef]
  9. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, �??Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,�?? Phy. Rev. Lett. 94, 053601 (2005). arXiv: quant-ph/0402191 .
  10. X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, �??Storage and long-distance distribution of telecom-band polarization entanglement generated in optical fiber,�?? To appear in Opt. Lett .
  11. P. L. Voss and P. Kumar, �??Raman-effect induced noise limits on �?(3) parametric amplifiers and wavelength converters,�?? J. Opt. B: Quantum Semiclass. Opt. 6, S762�??S770 (2004).
    [CrossRef]
  12. R. Tang, P. L. Voss, J. Lasri, P. Devgan, and P. Kumar, �??Noise-figure limit of fiber optical parametric amplifiers and wavelength converters: experimental investigation,�?? Opt. Lett. 29, 2372�??2374 (2004).
    [CrossRef]
  13. N. R. Newbury and K. L. Corwin, �??Comparison of stimulated and spontaneous scattering measurements of the full wavelength dependence of the Raman gain spectrum,�?? Symposium on Optical Fiber Measurement, G. W. Day, D. L. Franzen, and P. A. Williams, eds., NIST Special Publication 988 7�??10 (2002).
  14. J. E. Sharping, M. Fiorentino, and P. Kumar, �??Observation of twin-beam-type quantum correlation in optical fiber,�?? Opt. Lett. 26, 367�??369 (2001).
  15. D. B. Mortimore, �??Fiber loop reflectors,�?? J. Lightwave Technol. 6, 1217�??1224 (1988).
    [CrossRef]
  16. R. H. Stolen and M. A. Bosch, �??Low-frequency and low-temperature Raman scattering in silica fibers,�?? Phys. Rev. Lett. 48, 805�??808 (1982).
    [CrossRef]
  17. N. R. Newbury, �??Raman gain: pump-wavelength dependence in single-mode fiber,�?? Opt. Lett. 27, 1232�??1234 (2002).
  18. N. R. Newbury, �??Pump-wavelength dependence of Raman gain in single-mode optical fibers,�?? J. Lightwave Technol. 21, 3364�??3373 (2003).
    [CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, �??All fiber photon-pair source for quantum communications,�?? IEEE Photon. Technol. Lett. 14, 983�??985 (2002).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. B: Quantum Semiclass. Opt. (1)

P. L. Voss and P. Kumar, �??Raman-effect induced noise limits on �?(3) parametric amplifiers and wavelength converters,�?? J. Opt. B: Quantum Semiclass. Opt. 6, S762�??S770 (2004).
[CrossRef]

NEC Research and Development (1)

Dogariu, J. Y. Fang, and L. J.Wang, �??Correlated photon generation for quantum cryptography,�?? NEC Research and Development 44, 294�??296 (2003).

NIST Special Publication (1)

N. R. Newbury and K. L. Corwin, �??Comparison of stimulated and spontaneous scattering measurements of the full wavelength dependence of the Raman gain spectrum,�?? Symposium on Optical Fiber Measurement, G. W. Day, D. L. Franzen, and P. A. Williams, eds., NIST Special Publication 988 7�??10 (2002).

Opt. Express (3)

Opt. Lett (1)

X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, �??Storage and long-distance distribution of telecom-band polarization entanglement generated in optical fiber,�?? To appear in Opt. Lett .

Opt. Lett. (4)

Phy. Rev. Lett. (1)

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, �??Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,�?? Phy. Rev. Lett. 94, 053601 (2005). arXiv: quant-ph/0402191 .

Phys. Rev. A (1)

H. Takesue and K. Inoue, �??Generation of polarization-entangled photon pairs and violation of Bell�??s inequality using spontaneous four-wave mixing in a fiber loop,�?? Phys. Rev. A 70, 031802 (2004).
[CrossRef]

Phys. Rev. B (1)

R.W. Hellwarth, J. Cherlow, and T. Yang, �??Origin and frequency dependence of nonlinear optical susceptibilities of glasses,�?? Phys. Rev. B 11, 964�??967 (1975).
[CrossRef]

Phys. Rev. Lett. (1)

R. H. Stolen and M. A. Bosch, �??Low-frequency and low-temperature Raman scattering in silica fibers,�?? Phys. Rev. Lett. 48, 805�??808 (1982).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics