Abstract

The interferometric gravitational-wave detector LISA requires laser sources with 1W of output power and low frequency and power noise as well as actuators for further power and frequency stabilization. We report on power- and frequency noise measurements of an Yb-doped fiber amplifier seeded by a nonplanar ring oscillator and identify actuators for both power and frequency stabilization of such a system.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. Danzmann and A. Rüdiger, �??LISA technology �?? concepts, status, prospects,�?? Class. Quantum Grav. 20, S1�??S9 (2003).
    [CrossRef]
  2. T. J. Kane and R. L. Byer, �??Monolithic, unidirectional single-mode Nd:YAG ring laser,�?? Opt. Lett. 10, 65�??67 (1985).
    [CrossRef] [PubMed]
  3. I. Freitag, A. Tünnermann, and H.Welling, �??Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,�?? Opt. Commun. 115, 511�??515 (1995).
    [CrossRef]
  4. �??LISA: System and Technology Study Report,�?? ESA document ESA-SCI 11 (2000).
  5. T. J. Kane, �??Intensity Noise in Diode-Pumped Single-Frequency Nd:YAG Lasers and its Control by Electronic Feedback,�?? IEEE Phot. Techn. Lett. 2, 244�??245 (1990).
    [CrossRef]
  6. M. Hunnekuhl, �??Entwicklung weit frequenzabstimmbarer einfrequenter Laserstrahlquellen für Raumfahrtanwendungen,�?? Ph.D. thesis, University of Hannover (2004).
  7. A. Liem, J. Limpert, H. Zellmer, and A. Tünnermann, �??100-W single-frequency master-oscillator fiber power amplifier,�?? Opt. Lett. 28, 1537�??1539 (2003).
    [CrossRef] [PubMed]
  8. P. We�?els, M. Auerbach, and C. Fallnich, �??Narrow-linewidth master oscillator fiber power amplifier system with very low amplified spontaneous emission,�?? Opt. Commun. 205, 215�??219 (2002).
    [CrossRef]
  9. I. Zawischa, K. Plamann, C. Fallnich, H.Welling, H. Zellmer, and A. Tünnermann, �??All-solid-state neodymium-based single-frequency master oscillator fiber power-amplifier system emitting 5.5 W of radiation at 1064 nm,�?? Opt. Lett. 24, 469�??471 (1999).
    [CrossRef]
  10. I. Zawischa, M. Brendel, K. Danzmann, C. Fallnich, M. Heurs, S. Nagano, V. Quetschke, H. Welling, and B. Willke, �??The GEO600 laser system,�?? Class. Quantum Grav. 19, 1775�??1781 (2002).
    [CrossRef]
  11. F. Nocera, �??LIGO laser intensity noise suppression,�?? Class. Quantum Grav. 21, S481�??S485 (2004).
    [CrossRef]
  12. J. W. Armstrong, F. B. Eastabrook, and M. Tinto, �??Time delay interferometry,�?? Class. Quantum Grav. 20, S283�??S289 (2003).
    [CrossRef]
  13. U. Roth, T. Graf, E. Rochat, K. Haroud, J. E. Balmer, and H. P.Weber, �??Saturation, Gain, and Noise Properties of a Multipass Diode-Laser-Pumped Nd:YAG CW Amplifier,�?? IEEE J. Quantum Electron. 34, 1987�??1991 (1998).
    [CrossRef]
  14. R. Nicolaescu, T. Walther, E. S. Fry, and M. Muendel, �??Ultranarrow-linewidth, efficient amplification of low-power seed sources by a fiber amplifier,�?? Appl. Opt. 38, 1784�??1787 (1999).
    [CrossRef]
  15. E. Rochat, �??High power optical fiber amplifiers for coherent inter-satellite communication,�?? Ph.D. thesis, University of Neuchatel (2000).
  16. S. Höfer, A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, S. Unger, S. Jetschke, H.-R. Müller, and I. Freitag, �??Single-frequency master-oscillator fiber power amplifier system emitting 20 W of power,�?? Opt. Lett. 26, 1326�??1328 (2001).
    [CrossRef]
  17. S. Augst, T. Y. Fan, and A. Sanchez, �??Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers,�?? Opt. Lett. 29, 474�??476 (2004).
    [CrossRef] [PubMed]
  18. P. D. Welch, �??The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms,�?? IEEE Trans. Audio and Electroacoust. AU-15, 70�??73 (1967).
    [CrossRef]
  19. P. Burdack, M. Tröbs, M. Hunnekuhl, C. Fallnich, and I. Freitag, �??Modulation-free sub-Doppler laser frequency stabilization to molecular iodine with a common-path, two-color interferometer,�?? Opt. Express 12, 644�??650 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-644.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-644.</a>
    [CrossRef] [PubMed]
  20. A. Fellegara, M. Artiglia, S. B. Andreasen, A. Melloni, F. P. Espunes, and S. Wabnitz, �??COST 241 intercomparison of nonlinear refractive index measurements in dispersion shifted optical fibres at λ = 1550nm,�?? Electron. Lett. 33, 1168�??1170 (1997).
    [CrossRef]
  21. V. Quetschke, �??Korrelation von Rauschquellen bei Nd:YAG Lasersystemen,�?? Ph.D. thesis, University of Hannover (2003).
  22. B. Willke, S. Brozek, K. Danzmann, V. Quetschke, and S. Gossler, �??Frequency stabilization of a monolithic Nd:YAG ring laser by controlling the power of the laser-diode pump source,�?? Opt. Lett. 25, 1019�??1021 (2000).
    [CrossRef]
  23. M. Heurs, V. M. Quetschke, B. Willke, and K. Danzmann, �??Simultaneously suppressing frequency and intensity noise in a Nd:YAG nonplanar ring oscillator by means of the current-lock technique,�?? Opt. Lett. 29, 2148�??2150 (2004).
    [CrossRef] [PubMed]
  24. R. C. Dorf, Modern control systems (Addison Wesley, 1992).
  25. E. Desurvire, Erbium-doped fiber amplifiers : principles and applications (John Wiley & Sons, Inc., 1994).

Appl. Opt.

Class. Quantum Grav.

I. Zawischa, M. Brendel, K. Danzmann, C. Fallnich, M. Heurs, S. Nagano, V. Quetschke, H. Welling, and B. Willke, �??The GEO600 laser system,�?? Class. Quantum Grav. 19, 1775�??1781 (2002).
[CrossRef]

F. Nocera, �??LIGO laser intensity noise suppression,�?? Class. Quantum Grav. 21, S481�??S485 (2004).
[CrossRef]

J. W. Armstrong, F. B. Eastabrook, and M. Tinto, �??Time delay interferometry,�?? Class. Quantum Grav. 20, S283�??S289 (2003).
[CrossRef]

K. Danzmann and A. Rüdiger, �??LISA technology �?? concepts, status, prospects,�?? Class. Quantum Grav. 20, S1�??S9 (2003).
[CrossRef]

Electron. Lett.

A. Fellegara, M. Artiglia, S. B. Andreasen, A. Melloni, F. P. Espunes, and S. Wabnitz, �??COST 241 intercomparison of nonlinear refractive index measurements in dispersion shifted optical fibres at λ = 1550nm,�?? Electron. Lett. 33, 1168�??1170 (1997).
[CrossRef]

IEEE J. Quantum Electron.

U. Roth, T. Graf, E. Rochat, K. Haroud, J. E. Balmer, and H. P.Weber, �??Saturation, Gain, and Noise Properties of a Multipass Diode-Laser-Pumped Nd:YAG CW Amplifier,�?? IEEE J. Quantum Electron. 34, 1987�??1991 (1998).
[CrossRef]

IEEE Phot. Techn. Lett.

T. J. Kane, �??Intensity Noise in Diode-Pumped Single-Frequency Nd:YAG Lasers and its Control by Electronic Feedback,�?? IEEE Phot. Techn. Lett. 2, 244�??245 (1990).
[CrossRef]

IEEE Trans. Audio and Electroacoust.

P. D. Welch, �??The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms,�?? IEEE Trans. Audio and Electroacoust. AU-15, 70�??73 (1967).
[CrossRef]

Opt. Commun.

P. We�?els, M. Auerbach, and C. Fallnich, �??Narrow-linewidth master oscillator fiber power amplifier system with very low amplified spontaneous emission,�?? Opt. Commun. 205, 215�??219 (2002).
[CrossRef]

I. Freitag, A. Tünnermann, and H.Welling, �??Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts,�?? Opt. Commun. 115, 511�??515 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

B. Willke, S. Brozek, K. Danzmann, V. Quetschke, and S. Gossler, �??Frequency stabilization of a monolithic Nd:YAG ring laser by controlling the power of the laser-diode pump source,�?? Opt. Lett. 25, 1019�??1021 (2000).
[CrossRef]

M. Heurs, V. M. Quetschke, B. Willke, and K. Danzmann, �??Simultaneously suppressing frequency and intensity noise in a Nd:YAG nonplanar ring oscillator by means of the current-lock technique,�?? Opt. Lett. 29, 2148�??2150 (2004).
[CrossRef] [PubMed]

A. Liem, J. Limpert, H. Zellmer, and A. Tünnermann, �??100-W single-frequency master-oscillator fiber power amplifier,�?? Opt. Lett. 28, 1537�??1539 (2003).
[CrossRef] [PubMed]

T. J. Kane and R. L. Byer, �??Monolithic, unidirectional single-mode Nd:YAG ring laser,�?? Opt. Lett. 10, 65�??67 (1985).
[CrossRef] [PubMed]

I. Zawischa, K. Plamann, C. Fallnich, H.Welling, H. Zellmer, and A. Tünnermann, �??All-solid-state neodymium-based single-frequency master oscillator fiber power-amplifier system emitting 5.5 W of radiation at 1064 nm,�?? Opt. Lett. 24, 469�??471 (1999).
[CrossRef]

S. Höfer, A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, S. Unger, S. Jetschke, H.-R. Müller, and I. Freitag, �??Single-frequency master-oscillator fiber power amplifier system emitting 20 W of power,�?? Opt. Lett. 26, 1326�??1328 (2001).
[CrossRef]

S. Augst, T. Y. Fan, and A. Sanchez, �??Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers,�?? Opt. Lett. 29, 474�??476 (2004).
[CrossRef] [PubMed]

Other

E. Rochat, �??High power optical fiber amplifiers for coherent inter-satellite communication,�?? Ph.D. thesis, University of Neuchatel (2000).

M. Hunnekuhl, �??Entwicklung weit frequenzabstimmbarer einfrequenter Laserstrahlquellen für Raumfahrtanwendungen,�?? Ph.D. thesis, University of Hannover (2004).

�??LISA: System and Technology Study Report,�?? ESA document ESA-SCI 11 (2000).

R. C. Dorf, Modern control systems (Addison Wesley, 1992).

E. Desurvire, Erbium-doped fiber amplifiers : principles and applications (John Wiley & Sons, Inc., 1994).

V. Quetschke, �??Korrelation von Rauschquellen bei Nd:YAG Lasersystemen,�?? Ph.D. thesis, University of Hannover (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Relative power fluctuations of fiber amplifier output, seed laser, and pump diode.

Fig. 2.
Fig. 2.

Phase noise measurement setup; a) low-frequency measurement up to 0.5 Hz with phase counter b) interferometer locked, phase measurement from error signal (ES) or actuator signal (AS); acousto-optic modulator AOM, beam splitter BS, half-wave plate HWP, 40MHz local oscillator LO, nonplanar ring oscillator NPRO, output coupler OC, polarizing beam splitter PBS, photodiode PD, piezo-electrically actuated mirror PZT.

Fig. 3.
Fig. 3.

Low-frequency phase noise in fiber amplifier and limiting noise sources measured with heterodyne interferometer shown in Fig. 2a.

Fig. 4.
Fig. 4.

High-frequency phase noise in fiber amplifier measured with locked heterodyne interferometer as shown in Fig. 2b.

Fig. 5.
Fig. 5.

Combined phase noise measurements of fiber amplifier (Figs. 3 and 4) scaled as frequency noise.

Fig. 6.
Fig. 6.

Measured transfer function from relative seed laser power variations to relative amplifier output power variations.

Fig. 7.
Fig. 7.

Measured transfer function from relative pump power variations to relative amplifier output power variations.

Fig. 8.
Fig. 8.

Transfer function from relative seed laser power variations to relative amplifier output power, relative amplifier pump power to relative amplifier output power, and combined transfer function.

Fig. 9.
Fig. 9.

Measured frequency tuning efficiency of seed laser PZT; the data have been measured as transfer function from seed laser PZT to interferometer output phase with 47 Hz locking bandwidth of the interferometer; the DC level has been determined in a separate measurement using a scanning Fabry-Perot interferometer.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S v ( f ) = f × S ϕ ( f )
Δ P o = G × Δ P s
G = P o P s
Δ P o P o Δ P s P s = Δ P o Δ P s · P s P o = G · 1 G = 1
H 2 ( f ) = H 2 ( 1 + i f f 2 ) ( 1 + i f f 3 ) 1
H 2 ( f ) H 2 f 3 f 2 for f f 2 , f 3
H 3 ( f ) = H 3 1 + i f f 4

Metrics