Abstract

We show that the dynamic range of delay lines based on slow light propagation in atomic coherent media is restricted due to absorptive, dispersive, and nonlinear properties of the media. We compare the electro-magnetically induced transparency based delay lines with optical fiber and resonator delays.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [CrossRef]
  2. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
    [CrossRef]
  3. D. Budker, D. Kimball, S. Rochester, and V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
    [CrossRef]
  4. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
    [CrossRef] [PubMed]
  5. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
    [CrossRef] [PubMed]
  6. A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored, and frozen light,” Adv. At. Mol. Opt. Phys. 46, 191 (2001).
    [CrossRef]
  7. R. W. Boyd and D. J. Gauther, “Slow and Fast Light”, Prog. Optics 43, 497–530 (2002).
    [CrossRef]
  8. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
    [CrossRef] [PubMed]
  9. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultrasolw light propagation in a ruby crystal at room temperature”, Phys. Rev. Lett. 90, 113903 (2003).
    [CrossRef] [PubMed]
  10. S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Coherent resonant interactions and slow light with molecules band-gap fibers,” E-print archieve: physics/0412018 (2004).
  11. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
    [CrossRef]
  12. P. C. Ku, C. J. Chang-Hasnain, and S. L. Chuang, “Variable semiconductor all-optical buffer,” Electron. Lett. 38, 1581–1583 (2002).
    [CrossRef]
  13. J. B. Khurgin, “Comparative analysis of linear and nonlinear devices based on slow waves in periodic photonic structures and EIT media,” presented on “Nonlinear Optics” conference, Hawaii, (2004).
  14. A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
    [CrossRef] [PubMed]
  15. R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
    [CrossRef]
  16. E.B. Aleksandrov and V.S. Zapasski, “A fairy tale of stopped light,” Physics-Uspekhi 47, 1033–1036 (2004).
    [CrossRef]
  17. M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
    [CrossRef] [PubMed]
  18. M. D. Eisaman, L. Childress, A. Andr, F. Massou, A. S. Zibrov, and M. D. Lukin, “Shaping quantum pulses of light via coherent atomic memory,” Phys. Rev. Lett. 93, 233602 (2004).
    [CrossRef] [PubMed]
  19. G. P. Agrawal, Nonlinear fiber optics, (Academic Press, New York, 2001).
  20. S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
    [CrossRef] [PubMed]
  21. L. Deng, M. G. Payne, and E.W. Hagley, “Propagation of light pulses in an ultra-cold atomic vapor: mechanism for the loss of the probe field,” Opt. Commun. 198, 129–133 (2001).
    [CrossRef]
  22. M. Stahler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, “Coherent population trapping resonances in thermal 85Rb vapor: D1 versus D2 line excitation,” Opt. Lett. 27, 1472–1474 (2002).
    [CrossRef]
  23. A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully, “Narrowing of electromagnetically induced transparency resonance in a Doppler-broadened medium,” Phys. Rev. A 66, 013805 (2002).
    [CrossRef]
  24. Y. Rostovtsev, I. Protsenko, H. Lee, and A. Javan, “From laser-induced line narrowing to electromagnetically induced transparency in a Doppler-broadened system,” J. Mod. Opt. 49, 2501–2516 (2002).
    [CrossRef]
  25. H. Lee, Y. Rostovtsev, C. J. Bednar, and A. Javan, “From laser-induced line narrowing to electromagnetically induced transparency: closed system analysis,” Appl. Phys. B 76, 33–39 (2003).
    [CrossRef]
  26. M. D. Lukin, P. R. Hemmer, and M. O. Scully, “Resonant nonlinear optics in phase-coherent media,” Adv. Atom. Mol. Opt. Phys. 42, 347–386 (2000).
    [CrossRef]
  27. M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959–2962 (1997).
    [CrossRef]
  28. M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient Nonlinear Frequency Conversion with Maximal Atomic Coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
    [CrossRef] [PubMed]
  29. A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
    [CrossRef] [PubMed]
  30. A. B. Matsko, I. Novikova, M. O. Scully, and G. R. Welch, “Radiation trapping in coherent media,” Phys. Rev. Lett. 87, 133601 (2001).
    [CrossRef] [PubMed]
  31. J. E. Heebner, R. W. Boyd, and Q. H. Park, “Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonator-array waveguide,” Phys. Rev. E 65, 036619 (2002).
    [CrossRef]
  32. J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum. Electron. 40, 726–730 (2004).
    [CrossRef]

2005 (1)

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
[CrossRef]

2004 (3)

E.B. Aleksandrov and V.S. Zapasski, “A fairy tale of stopped light,” Physics-Uspekhi 47, 1033–1036 (2004).
[CrossRef]

M. D. Eisaman, L. Childress, A. Andr, F. Massou, A. S. Zibrov, and M. D. Lukin, “Shaping quantum pulses of light via coherent atomic memory,” Phys. Rev. Lett. 93, 233602 (2004).
[CrossRef] [PubMed]

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum. Electron. 40, 726–730 (2004).
[CrossRef]

2003 (2)

H. Lee, Y. Rostovtsev, C. J. Bednar, and A. Javan, “From laser-induced line narrowing to electromagnetically induced transparency: closed system analysis,” Appl. Phys. B 76, 33–39 (2003).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultrasolw light propagation in a ruby crystal at room temperature”, Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

2002 (8)

R. W. Boyd and D. J. Gauther, “Slow and Fast Light”, Prog. Optics 43, 497–530 (2002).
[CrossRef]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully, “Narrowing of electromagnetically induced transparency resonance in a Doppler-broadened medium,” Phys. Rev. A 66, 013805 (2002).
[CrossRef]

Y. Rostovtsev, I. Protsenko, H. Lee, and A. Javan, “From laser-induced line narrowing to electromagnetically induced transparency in a Doppler-broadened system,” J. Mod. Opt. 49, 2501–2516 (2002).
[CrossRef]

P. C. Ku, C. J. Chang-Hasnain, and S. L. Chuang, “Variable semiconductor all-optical buffer,” Electron. Lett. 38, 1581–1583 (2002).
[CrossRef]

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef] [PubMed]

J. E. Heebner, R. W. Boyd, and Q. H. Park, “Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonator-array waveguide,” Phys. Rev. E 65, 036619 (2002).
[CrossRef]

M. Stahler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, “Coherent population trapping resonances in thermal 85Rb vapor: D1 versus D2 line excitation,” Opt. Lett. 27, 1472–1474 (2002).
[CrossRef]

2001 (5)

L. Deng, M. G. Payne, and E.W. Hagley, “Propagation of light pulses in an ultra-cold atomic vapor: mechanism for the loss of the probe field,” Opt. Commun. 198, 129–133 (2001).
[CrossRef]

A. B. Matsko, I. Novikova, M. O. Scully, and G. R. Welch, “Radiation trapping in coherent media,” Phys. Rev. Lett. 87, 133601 (2001).
[CrossRef] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef] [PubMed]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored, and frozen light,” Adv. At. Mol. Opt. Phys. 46, 191 (2001).
[CrossRef]

2000 (2)

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef] [PubMed]

M. D. Lukin, P. R. Hemmer, and M. O. Scully, “Resonant nonlinear optics in phase-coherent media,” Adv. Atom. Mol. Opt. Phys. 42, 347–386 (2000).
[CrossRef]

1999 (4)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

D. Budker, D. Kimball, S. Rochester, and V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[CrossRef]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[CrossRef]

1997 (1)

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959–2962 (1997).
[CrossRef]

1996 (1)

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient Nonlinear Frequency Conversion with Maximal Atomic Coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef] [PubMed]

1995 (1)

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[CrossRef] [PubMed]

1992 (1)

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
[CrossRef] [PubMed]

Agrawal, G. P.

G. P. Agrawal, Nonlinear fiber optics, (Academic Press, New York, 2001).

Aleksandrov, E.B.

E.B. Aleksandrov and V.S. Zapasski, “A fairy tale of stopped light,” Physics-Uspekhi 47, 1033–1036 (2004).
[CrossRef]

Andr, A.

M. D. Eisaman, L. Childress, A. Andr, F. Massou, A. S. Zibrov, and M. D. Lukin, “Shaping quantum pulses of light via coherent atomic memory,” Phys. Rev. Lett. 93, 233602 (2004).
[CrossRef] [PubMed]

Bednar, C. J.

H. Lee, Y. Rostovtsev, C. J. Bednar, and A. Javan, “From laser-induced line narrowing to electromagnetically induced transparency: closed system analysis,” Appl. Phys. B 76, 33–39 (2003).
[CrossRef]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultrasolw light propagation in a ruby crystal at room temperature”, Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
[CrossRef]

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum. Electron. 40, 726–730 (2004).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultrasolw light propagation in a ruby crystal at room temperature”, Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

R. W. Boyd and D. J. Gauther, “Slow and Fast Light”, Prog. Optics 43, 497–530 (2002).
[CrossRef]

J. E. Heebner, R. W. Boyd, and Q. H. Park, “Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonator-array waveguide,” Phys. Rev. E 65, 036619 (2002).
[CrossRef]

Budker, D.

D. Budker, D. Kimball, S. Rochester, and V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[CrossRef]

Chang-Hasnain, C. J.

P. C. Ku, C. J. Chang-Hasnain, and S. L. Chuang, “Variable semiconductor all-optical buffer,” Electron. Lett. 38, 1581–1583 (2002).
[CrossRef]

Childress, L.

M. D. Eisaman, L. Childress, A. Andr, F. Massou, A. S. Zibrov, and M. D. Lukin, “Shaping quantum pulses of light via coherent atomic memory,” Phys. Rev. Lett. 93, 233602 (2004).
[CrossRef] [PubMed]

Chuang, S. L.

P. C. Ku, C. J. Chang-Hasnain, and S. L. Chuang, “Variable semiconductor all-optical buffer,” Electron. Lett. 38, 1581–1583 (2002).
[CrossRef]

Deng, L.

L. Deng, M. G. Payne, and E.W. Hagley, “Propagation of light pulses in an ultra-cold atomic vapor: mechanism for the loss of the probe field,” Opt. Commun. 198, 129–133 (2001).
[CrossRef]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Eisaman, M. D.

M. D. Eisaman, L. Childress, A. Andr, F. Massou, A. S. Zibrov, and M. D. Lukin, “Shaping quantum pulses of light via coherent atomic memory,” Phys. Rev. Lett. 93, 233602 (2004).
[CrossRef] [PubMed]

Field, J. E.

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
[CrossRef] [PubMed]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef] [PubMed]

Fleischhauer, M.

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef] [PubMed]

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959–2962 (1997).
[CrossRef]

Fry, E. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Gaeta, A. L.

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
[CrossRef]

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Coherent resonant interactions and slow light with molecules band-gap fibers,” E-print archieve: physics/0412018 (2004).

Gauther, D. J.

R. W. Boyd and D. J. Gauther, “Slow and Fast Light”, Prog. Optics 43, 497–530 (2002).
[CrossRef]

Gauthier, D. J.

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Ghosh, S.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Coherent resonant interactions and slow light with molecules band-gap fibers,” E-print archieve: physics/0412018 (2004).

Hagley, E.W.

L. Deng, M. G. Payne, and E.W. Hagley, “Propagation of light pulses in an ultra-cold atomic vapor: mechanism for the loss of the probe field,” Opt. Commun. 198, 129–133 (2001).
[CrossRef]

Ham, B. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[CrossRef]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient Nonlinear Frequency Conversion with Maximal Atomic Coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef] [PubMed]

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[CrossRef] [PubMed]

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
[CrossRef] [PubMed]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[CrossRef]

Heebner, J. E.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum. Electron. 40, 726–730 (2004).
[CrossRef]

J. E. Heebner, R. W. Boyd, and Q. H. Park, “Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonator-array waveguide,” Phys. Rev. E 65, 036619 (2002).
[CrossRef]

Hemmer, P. R.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

M. D. Lukin, P. R. Hemmer, and M. O. Scully, “Resonant nonlinear optics in phase-coherent media,” Adv. Atom. Mol. Opt. Phys. 42, 347–386 (2000).
[CrossRef]

Hollberg, L.

M. Stahler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, “Coherent population trapping resonances in thermal 85Rb vapor: D1 versus D2 line excitation,” Opt. Lett. 27, 1472–1474 (2002).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959–2962 (1997).
[CrossRef]

Jackson, D. J.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum. Electron. 40, 726–730 (2004).
[CrossRef]

Jain, M.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient Nonlinear Frequency Conversion with Maximal Atomic Coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef] [PubMed]

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[CrossRef] [PubMed]

Javan, A.

H. Lee, Y. Rostovtsev, C. J. Bednar, and A. Javan, “From laser-induced line narrowing to electromagnetically induced transparency: closed system analysis,” Appl. Phys. B 76, 33–39 (2003).
[CrossRef]

A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully, “Narrowing of electromagnetically induced transparency resonance in a Doppler-broadened medium,” Phys. Rev. A 66, 013805 (2002).
[CrossRef]

Y. Rostovtsev, I. Protsenko, H. Lee, and A. Javan, “From laser-induced line narrowing to electromagnetically induced transparency in a Doppler-broadened system,” J. Mod. Opt. 49, 2501–2516 (2002).
[CrossRef]

Kasapi, A.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[CrossRef] [PubMed]

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
[CrossRef] [PubMed]

Kash, M. M.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Khurgin, J. B.

J. B. Khurgin, “Comparative analysis of linear and nonlinear devices based on slow waves in periodic photonic structures and EIT media,” presented on “Nonlinear Optics” conference, Hawaii, (2004).

Kimball, D.

D. Budker, D. Kimball, S. Rochester, and V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[CrossRef]

Kitching, J.

Knappe, S.

Kocharovskaya, O.

A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully, “Narrowing of electromagnetically induced transparency resonance in a Doppler-broadened medium,” Phys. Rev. A 66, 013805 (2002).
[CrossRef]

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef] [PubMed]

A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored, and frozen light,” Adv. At. Mol. Opt. Phys. 46, 191 (2001).
[CrossRef]

Ku, P. C.

P. C. Ku, C. J. Chang-Hasnain, and S. L. Chuang, “Variable semiconductor all-optical buffer,” Electron. Lett. 38, 1581–1583 (2002).
[CrossRef]

Lee, H.

H. Lee, Y. Rostovtsev, C. J. Bednar, and A. Javan, “From laser-induced line narrowing to electromagnetically induced transparency: closed system analysis,” Appl. Phys. B 76, 33–39 (2003).
[CrossRef]

A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully, “Narrowing of electromagnetically induced transparency resonance in a Doppler-broadened medium,” Phys. Rev. A 66, 013805 (2002).
[CrossRef]

Y. Rostovtsev, I. Protsenko, H. Lee, and A. Javan, “From laser-induced line narrowing to electromagnetically induced transparency in a Doppler-broadened system,” J. Mod. Opt. 49, 2501–2516 (2002).
[CrossRef]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultrasolw light propagation in a ruby crystal at room temperature”, Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Lukin, M. D.

M. D. Eisaman, L. Childress, A. Andr, F. Massou, A. S. Zibrov, and M. D. Lukin, “Shaping quantum pulses of light via coherent atomic memory,” Phys. Rev. Lett. 93, 233602 (2004).
[CrossRef] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef] [PubMed]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef] [PubMed]

M. D. Lukin, P. R. Hemmer, and M. O. Scully, “Resonant nonlinear optics in phase-coherent media,” Adv. Atom. Mol. Opt. Phys. 42, 347–386 (2000).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959–2962 (1997).
[CrossRef]

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef] [PubMed]

Massou, F.

M. D. Eisaman, L. Childress, A. Andr, F. Massou, A. S. Zibrov, and M. D. Lukin, “Shaping quantum pulses of light via coherent atomic memory,” Phys. Rev. Lett. 93, 233602 (2004).
[CrossRef] [PubMed]

Matsko, A. B.

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef] [PubMed]

A. B. Matsko, I. Novikova, M. O. Scully, and G. R. Welch, “Radiation trapping in coherent media,” Phys. Rev. Lett. 87, 133601 (2001).
[CrossRef] [PubMed]

A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored, and frozen light,” Adv. At. Mol. Opt. Phys. 46, 191 (2001).
[CrossRef]

Merriam, A. J.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient Nonlinear Frequency Conversion with Maximal Atomic Coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef] [PubMed]

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Novikova, I.

A. B. Matsko, I. Novikova, M. O. Scully, and G. R. Welch, “Radiation trapping in coherent media,” Phys. Rev. Lett. 87, 133601 (2001).
[CrossRef] [PubMed]

Ouzounov, D. G.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Coherent resonant interactions and slow light with molecules band-gap fibers,” E-print archieve: physics/0412018 (2004).

Park, Q. H.

J. E. Heebner, R. W. Boyd, and Q. H. Park, “Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonator-array waveguide,” Phys. Rev. E 65, 036619 (2002).
[CrossRef]

Payne, M. G.

L. Deng, M. G. Payne, and E.W. Hagley, “Propagation of light pulses in an ultra-cold atomic vapor: mechanism for the loss of the probe field,” Opt. Commun. 198, 129–133 (2001).
[CrossRef]

Phillips, D. F.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef] [PubMed]

Protsenko, I.

Y. Rostovtsev, I. Protsenko, H. Lee, and A. Javan, “From laser-induced line narrowing to electromagnetically induced transparency in a Doppler-broadened system,” J. Mod. Opt. 49, 2501–2516 (2002).
[CrossRef]

Robinson, H. G.

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959–2962 (1997).
[CrossRef]

Rochester, S.

D. Budker, D. Kimball, S. Rochester, and V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[CrossRef]

Rostovtsev, Y.

H. Lee, Y. Rostovtsev, C. J. Bednar, and A. Javan, “From laser-induced line narrowing to electromagnetically induced transparency: closed system analysis,” Appl. Phys. B 76, 33–39 (2003).
[CrossRef]

Y. Rostovtsev, I. Protsenko, H. Lee, and A. Javan, “From laser-induced line narrowing to electromagnetically induced transparency in a Doppler-broadened system,” J. Mod. Opt. 49, 2501–2516 (2002).
[CrossRef]

A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored, and frozen light,” Adv. At. Mol. Opt. Phys. 46, 191 (2001).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Rostovtsev, Y. V.

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef] [PubMed]

Sautenkov, V. A.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Schweinsberg, A.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum. Electron. 40, 726–730 (2004).
[CrossRef]

Scully, M. O.

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef] [PubMed]

A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully, “Narrowing of electromagnetically induced transparency resonance in a Doppler-broadened medium,” Phys. Rev. A 66, 013805 (2002).
[CrossRef]

A. B. Matsko, I. Novikova, M. O. Scully, and G. R. Welch, “Radiation trapping in coherent media,” Phys. Rev. Lett. 87, 133601 (2001).
[CrossRef] [PubMed]

A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored, and frozen light,” Adv. At. Mol. Opt. Phys. 46, 191 (2001).
[CrossRef]

M. D. Lukin, P. R. Hemmer, and M. O. Scully, “Resonant nonlinear optics in phase-coherent media,” Adv. Atom. Mol. Opt. Phys. 42, 347–386 (2000).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959–2962 (1997).
[CrossRef]

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Sharping, J. E.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Coherent resonant interactions and slow light with molecules band-gap fibers,” E-print archieve: physics/0412018 (2004).

Stahler, M.

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Taichenachev, A.

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Velichansky, V. L.

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959–2962 (1997).
[CrossRef]

Walsworth, R. L.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef] [PubMed]

Welch, G. R.

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef] [PubMed]

A. B. Matsko, I. Novikova, M. O. Scully, and G. R. Welch, “Radiation trapping in coherent media,” Phys. Rev. Lett. 87, 133601 (2001).
[CrossRef] [PubMed]

A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored, and frozen light,” Adv. At. Mol. Opt. Phys. 46, 191 (2001).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Willner, A. E.

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Wong, V.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum. Electron. 40, 726–730 (2004).
[CrossRef]

Wynands, R.

Xia, H.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient Nonlinear Frequency Conversion with Maximal Atomic Coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef] [PubMed]

Yashchuk, V.

D. Budker, D. Kimball, S. Rochester, and V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[CrossRef]

Yin, G. Y.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient Nonlinear Frequency Conversion with Maximal Atomic Coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef] [PubMed]

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[CrossRef] [PubMed]

Yudin, V.

Zapasski, V.S.

E.B. Aleksandrov and V.S. Zapasski, “A fairy tale of stopped light,” Physics-Uspekhi 47, 1033–1036 (2004).
[CrossRef]

Zibrov, A. S.

M. D. Eisaman, L. Childress, A. Andr, F. Massou, A. S. Zibrov, and M. D. Lukin, “Shaping quantum pulses of light via coherent atomic memory,” Phys. Rev. Lett. 93, 233602 (2004).
[CrossRef] [PubMed]

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef] [PubMed]

A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored, and frozen light,” Adv. At. Mol. Opt. Phys. 46, 191 (2001).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959–2962 (1997).
[CrossRef]

Adv. At. Mol. Opt. Phys. (1)

A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch, A. S. Zibrov, and M. O. Scully, “Slow, ultraslow, stored, and frozen light,” Adv. At. Mol. Opt. Phys. 46, 191 (2001).
[CrossRef]

Adv. Atom. Mol. Opt. Phys. (1)

M. D. Lukin, P. R. Hemmer, and M. O. Scully, “Resonant nonlinear optics in phase-coherent media,” Adv. Atom. Mol. Opt. Phys. 42, 347–386 (2000).
[CrossRef]

Appl. Phys. B (1)

H. Lee, Y. Rostovtsev, C. J. Bednar, and A. Javan, “From laser-induced line narrowing to electromagnetically induced transparency: closed system analysis,” Appl. Phys. B 76, 33–39 (2003).
[CrossRef]

Electron. Lett. (1)

P. C. Ku, C. J. Chang-Hasnain, and S. L. Chuang, “Variable semiconductor all-optical buffer,” Electron. Lett. 38, 1581–1583 (2002).
[CrossRef]

IEEE J. Quantum. Electron. (1)

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum. Electron. 40, 726–730 (2004).
[CrossRef]

J. Mod. Opt. (1)

Y. Rostovtsev, I. Protsenko, H. Lee, and A. Javan, “From laser-induced line narrowing to electromagnetically induced transparency in a Doppler-broadened system,” J. Mod. Opt. 49, 2501–2516 (2002).
[CrossRef]

Nature (2)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Opt. Commun. (1)

L. Deng, M. G. Payne, and E.W. Hagley, “Propagation of light pulses in an ultra-cold atomic vapor: mechanism for the loss of the probe field,” Opt. Commun. 198, 129–133 (2001).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (3)

A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully, “Narrowing of electromagnetically induced transparency resonance in a Doppler-broadened medium,” Phys. Rev. A 66, 013805 (2002).
[CrossRef]

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
[CrossRef] [PubMed]

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Phys. Rev. E (1)

J. E. Heebner, R. W. Boyd, and Q. H. Park, “Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonator-array waveguide,” Phys. Rev. E 65, 036619 (2002).
[CrossRef]

Phys. Rev. Lett. (13)

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).
[CrossRef] [PubMed]

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959–2962 (1997).
[CrossRef]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient Nonlinear Frequency Conversion with Maximal Atomic Coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
[CrossRef] [PubMed]

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef] [PubMed]

A. B. Matsko, I. Novikova, M. O. Scully, and G. R. Welch, “Radiation trapping in coherent media,” Phys. Rev. Lett. 87, 133601 (2001).
[CrossRef] [PubMed]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000).
[CrossRef] [PubMed]

M. D. Eisaman, L. Childress, A. Andr, F. Massou, A. S. Zibrov, and M. D. Lukin, “Shaping quantum pulses of light via coherent atomic memory,” Phys. Rev. Lett. 93, 233602 (2004).
[CrossRef] [PubMed]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

D. Budker, D. Kimball, S. Rochester, and V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[CrossRef]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[CrossRef] [PubMed]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultrasolw light propagation in a ruby crystal at room temperature”, Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Physics-Uspekhi (1)

E.B. Aleksandrov and V.S. Zapasski, “A fairy tale of stopped light,” Physics-Uspekhi 47, 1033–1036 (2004).
[CrossRef]

Prog. Optics (1)

R. W. Boyd and D. J. Gauther, “Slow and Fast Light”, Prog. Optics 43, 497–530 (2002).
[CrossRef]

Other (3)

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Coherent resonant interactions and slow light with molecules band-gap fibers,” E-print archieve: physics/0412018 (2004).

G. P. Agrawal, Nonlinear fiber optics, (Academic Press, New York, 2001).

J. B. Khurgin, “Comparative analysis of linear and nonlinear devices based on slow waves in periodic photonic structures and EIT media,” presented on “Nonlinear Optics” conference, Hawaii, (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Double-lambda scheme. (a) Usual level configuration for EIT observation. The atomic coherence is created through two-photon transition |c〉⃡|α〉⃡|b〉 while off resonant level |α 2〉 results in residual absorption of the light. (b) Four-wave mixing process that could mask EIT if ωbc >γ, where γ is the natural decay rate of state |a〉. Presence of the off resonant level shown by dashed line is not necessary to observe the wave mixing process.

Fig. 2.
Fig. 2.

Normalized absorption and refractivity of the double-Λ system shown in Fig. 1a. Red (solid) curves correspond to the exact solution of the Maxwell-Bloch equations for the system, while blue (dashed) lines stand for the analytical approximations (9) and (5). The parameters used in the calculations are |Ω|=0.1γ, |Ω p |=0.01γ, γbc =0.001γ, and Δ=200γ

Fig. 3.
Fig. 3.

Normalized absorption and refractivity of the Doppler-broadened double-Λ system shown in Fig. 1a. Red (solid) curves correspond to the exact solution of the Maxwell-Bloch equations for the system, while blue (dashed) lines stand for the analytical approximations (16) and (12). The parameters used in the calculations are |Ω|=10γ, |Ω p |=0.3γ, γbc =0.004γ, Δ D =100γ, and Δ=300γ.

Fig. 4.
Fig. 4.

Left: Transmission of a bi-rectangular probe pulse. Relative power of the probe pulse at the entrance (blue) and exit (red) of the atomic cell. The probe power transmission is 20%. Right: Transmission of a comb of short rectangular probe pulses. The color indicates here simultaneous reduction of the both pump and probe power (from red to blue). The corresponding relative probe power transmission is 40, 30, 25, 20, 15 and 10 % (from red to blue). All output probe pulses are normalized to unity for convenience of perception.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

N B = BL V g ,
τ g τ B = L τ B V g N B Δ ν B B .
B ( β 2 L ) 1 2 0.25 ,
B ( β 3 L ) 1 3 0.324 .
β κ [ γ δ ( Ω 2 δ 2 ) ( Ω 2 δ 2 + γ γ bc ) 2 + γ 2 δ 2 + γ a 2 Δ δ ] ,
β 1 = 1 V g κ γ Ω 2 ,
β 2 0 ,
β 3 6 κ γ 3 Ω 6 ( 1 Ω 2 γ 2 ) .
α 2 κ [ γ γ bc ( Ω 2 δ 2 + γ γ bc ) + γ 2 δ 2 ( Ω 2 δ 2 + γ γ bc ) 2 + γ 2 δ 2 + γ a 2 2 Δ 2 ] ,
P out P in = exp [ 2 κ L ( γ γ bc Ω 2 + γ a 2 2 Δ 2 ) ] exp [ 2 κ L γ 2 δ 2 Ω 4 ] .
δ EIT = Ω 2 γ ( 2 ln 2 κ L ) 1 2 .
β D κ [ γ δ ( Ω 2 δ 2 ) ( Ω 2 δ 2 + Δ D γ bc ) 2 + Δ D 2 δ 2 + γ a 2 Δ Δ D 2 + Δ 2 ] .
β D 1 1 V g = κ γ Ω 2 ,
β D 2 0 ,
β D 3 6 κ γ Δ D 2 Ω 6 .
α D 2 κ [ γ γ bc ( Ω 2 δ 2 + Δ D γ bc ) + Δ D γ δ 2 ( Ω 2 δ 2 + Δ D γ bc ) 2 + Δ D 2 δ 2 + γ a 2 Δ D Δ D 2 + Δ 2 ] .
P out P in = exp [ 2 κ L ( γ γ bc Ω 2 + γ a 2 Δ D Δ D 2 + Δ 2 ) ] ×
exp [ 2 κ L γ Δ D δ 2 Ω 4 ] .
δ DEIT = Ω 2 γ Δ D ( 2 ln 2 κ L ) 1 2 .
B Ω 2 γ 0.18 ( 1 Ω 2 γ 2 1 3 + 0.18 ξ 1 6 ) ξ 1 3 ,
B D Ω 2 Δ D 0.18 ( 1 + 0.18 ξ D 1 6 ) ξ D 1 2 ,
N B 0.18 ξ 2 3 1 Ω 2 γ 2 1 3 + 0.18 ξ 1 6 ,
N B D 0.18 ξ D 2 3 1 + 0.18 ξ D 1 6 .
ξ Δ 2 2 γ a 2 2 ,
ξ D γ γ a 2 Δ 2 + Δ D 2 2 Δ D 2 .
ξ ω bc γ ,
ξ D ω bc Δ D .
L f = N B c B n f ,

Metrics