Abstract

Site-selective time-resolved spectroscopy of Eu3+ in KPb2Cl5 has been investigated by using fluorescence line narrowing technique. A crystal field analysis and simulation of the experimental results has been performed in order to parametrize the crystal field at the Eu3+ sites. Three symmetry independent crystal field sites for the rare-earth ion in this crystal were found. A plausible argument about the crystallographic nature of these sites is given.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G.L. Vossler, C.L. Brooks, and K.A. Winik, �??Planar Er:Yb glass ion exchanged waveguide laser,�?? Electron. Lett. 31, 1162-1163 (1995).
    [CrossRef]
  2. T.H. Whitley, C.A. Millar, R. Wyatt, M.C. Brierley, and D. Szebesta, �??Upconversion pumped green lasing in erbium doped fluorozirconate fibre,�?? Electron. Lett. 27, 1785-1786 (1991).
    [CrossRef]
  3. J.E. Roman, P. Camy, M. Hempstead, W.S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, J. S. Wilkinson, �??Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,�?? Electron. Lett. 31, 1345-1346 (1995).
    [CrossRef]
  4. A. Pollack and D.B. Chang, �??Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals,�?? J. Appl. Phys. 64, 2885-2893 (1988).
    [CrossRef]
  5. M.C. Nostrand, R.H. Page, S.A. Payne, W.F. Krupke, P. G. Schunemann, and L.I. Isaenko, �??Spectroscopic data for infrared transitions in CaGa2S4:Dy3+ and KPb2Cl5: Dy3+,�?? OSA TOPS 19, 524-528 (1998).
  6. M.C. Nostrand, R.H. Page, S.A. Payne, W.F. Krupke, P. G. Schunemann, and L.I. Isaenko, �??Room temperature CaGa2S4:Dy3+ laser action at 2.43 and 4.31 μm and KPb2Cl5: Dy3+ laser action at 2.43 μm,�?? OSA TOPS 26, 441-449 (1999).
  7. M.C. Nostrand, R.H. Page, S.A. Payne, L.I. Isaenko, and A.P. Yelisseyev, �??Optical properties of Dy3+-and Nd3+-doped KPb2Cl5,�?? J. Opt. Soc. Am. B 18, 264-276 (2001).
    [CrossRef]
  8. R. Balda, M. Voda, M. Al-Saleh, and J. Fernández, �??Visible luminescence in KPb2Cl5:Pr3+ crystal,�?? J. Lumin. 97, 190-97 (2002).
    [CrossRef]
  9. A. Mendioroz, J. Fernández, M. Voda, M. Al-Saleh, R. Balda, and A. J. Garcia-Adeva, �??Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal,�?? Opt. Lett. 27, 1525-1527 (2002).
    [CrossRef]
  10. N.W. Jenkins, S.R. Bowman, S.O´Connor, S.K. Searles, J. Ganem, �??Spectroscopic characterization of Er-doped KPb2Cl5 laser crystal,�?? Opt. Mat. 22, 311-320 (2003).
    [CrossRef]
  11. R. Balda, J. Fernández, A. Mendioroz, M. Voda, and M. Al-Saleh, �??Infrared-to-visible upconversion processes in Pr3+/Yb3+-codoped KPb2Cl5,�?? Phys. Rev. B 68, 1651011-1651017 (2003).
    [CrossRef]
  12. R. Balda, A. J. Garcia-Adeva, M. Voda, and J. Fernández, "Upconversion processes in Er3+-doped KPb2Cl5,�?? Phys. Rev. B 69, 2052031-2052038 (2004).
    [CrossRef]
  13. M. Voda, M. Al-Saleh, R. Balda, J. Fernández, G. Lobera �??Crystal Growth of Rare-earth-doped Ternary Potassium Lead Chloride Single Crystals by the Bridgman Method,�?? Opt. Mat. 26, 359-363 (2004).
    [CrossRef]
  14. K. Nitsch, M. Dusek, M. Nikl, K. Polák, and M. Rodová, �??Ternary alkali lead chlorides: crystal growth, cristal structure, absorption and emission properties,�?? Prog. Crystal Growth and Charact. 30, 1-22 (1995).
    [CrossRef]
  15. R. Balda, J. Fernández, J.L. Adam, and M.A. Arriandiaga, �??Time-resolved fluorescence-line narrowing and energy transfer studies in a Eu3+-doped fluorophosphate glass,�?? Phys. Rev. B 54, 12076-12086 (1996).
    [CrossRef]
  16. G. Blasse, A. Bril, and W.C. Nieuwpoort, �??On the Eu3+ fluorescence in mixed metal oxides. Part I- The crystal structure sensitivity of the intensity ratio of electric and magnetic dipole emission,�?? J. Phys. Chem. Solids 27, 1587-1592 (1966).
    [CrossRef]
  17. G. Blasse and A. Bril, �??On the Eu3+ fluorescence in mixed metal oxides. II The 5D0 �?? 7F0 emission,�?? Philips Res. Repts. 21, 368-378 (1966).
  18. W.C. Nieuwpoort and G. Blasse, �??Linear Crystal-Field Terms and 5D0�??7F0 transition of Eu3+ ion,�?? Sol. State Commun. 4, 227-232 (1966).
    [CrossRef]
  19. C. Görller-Walrand and K. Binnemans, �??Rationalization of Crystal-Field Parametrization�??, in Handbook on the Physics and Chemistry of Rare Earths, K.A. Gschneidner Jr. and L. Eyring, eds. (Elsevier Science, Amsterdam, 1996), vol.23 pp. 121-283.
    [CrossRef]
  20. B.G. Wybourne, Spectroscopic Properties of Rare Earths, Wiley, New York, 1965.
  21. P. Porcher, Fortran routine GROMINET for simulation of real and complex crystal-field parameters on 4f6 and 4f8 configurations, (unpublished 1995).
  22. S.V. Myagkota, A.S. Voloshinovskii, I.V. Stefanskii, M.S. Mikhalik, I.P. Pashuk, �??Reflection and emission properties of lead-based perovskite-like crystals,�?? Radiation Measurements 29, 273-277 (1998).
    [CrossRef]
  23. L. Isaenko, A. Yelisseyev, A. Tkachuk, S. Ivanova, S. Vatnik, A. Merkulov, S. Payne, R. Page, M. Nostrand, �??New laser crystal based on KPb2Cl5 for IR region,�?? Mater. Science and Engineering B81 188-190 (2001).
    [CrossRef]
  24. Cotton and Wilkinson, Advanced Inorganic Chemistry (Wiley 1980).
  25. P. Porcher, M. Couto dos Santos, and O. Malta, �??Relationship between phenomenological crystal field parameters and the crystal structure: The simple overlap model,�?? Phys. Chem. Chem. Phys. 1, 397-405 (1999).
    [CrossRef]

Electron. Lett.

G.L. Vossler, C.L. Brooks, and K.A. Winik, �??Planar Er:Yb glass ion exchanged waveguide laser,�?? Electron. Lett. 31, 1162-1163 (1995).
[CrossRef]

T.H. Whitley, C.A. Millar, R. Wyatt, M.C. Brierley, and D. Szebesta, �??Upconversion pumped green lasing in erbium doped fluorozirconate fibre,�?? Electron. Lett. 27, 1785-1786 (1991).
[CrossRef]

J.E. Roman, P. Camy, M. Hempstead, W.S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, J. S. Wilkinson, �??Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,�?? Electron. Lett. 31, 1345-1346 (1995).
[CrossRef]

Handbook on the Physics and Chemistry of

C. Görller-Walrand and K. Binnemans, �??Rationalization of Crystal-Field Parametrization�??, in Handbook on the Physics and Chemistry of Rare Earths, K.A. Gschneidner Jr. and L. Eyring, eds. (Elsevier Science, Amsterdam, 1996), vol.23 pp. 121-283.
[CrossRef]

J. Appl. Phys.

A. Pollack and D.B. Chang, �??Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals,�?? J. Appl. Phys. 64, 2885-2893 (1988).
[CrossRef]

J. Lumin.

R. Balda, M. Voda, M. Al-Saleh, and J. Fernández, �??Visible luminescence in KPb2Cl5:Pr3+ crystal,�?? J. Lumin. 97, 190-97 (2002).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. Solids

G. Blasse, A. Bril, and W.C. Nieuwpoort, �??On the Eu3+ fluorescence in mixed metal oxides. Part I- The crystal structure sensitivity of the intensity ratio of electric and magnetic dipole emission,�?? J. Phys. Chem. Solids 27, 1587-1592 (1966).
[CrossRef]

Mater. Science and Engineering

L. Isaenko, A. Yelisseyev, A. Tkachuk, S. Ivanova, S. Vatnik, A. Merkulov, S. Payne, R. Page, M. Nostrand, �??New laser crystal based on KPb2Cl5 for IR region,�?? Mater. Science and Engineering B81 188-190 (2001).
[CrossRef]

Opt. Lett.

Opt. Mat.

N.W. Jenkins, S.R. Bowman, S.O´Connor, S.K. Searles, J. Ganem, �??Spectroscopic characterization of Er-doped KPb2Cl5 laser crystal,�?? Opt. Mat. 22, 311-320 (2003).
[CrossRef]

M. Voda, M. Al-Saleh, R. Balda, J. Fernández, G. Lobera �??Crystal Growth of Rare-earth-doped Ternary Potassium Lead Chloride Single Crystals by the Bridgman Method,�?? Opt. Mat. 26, 359-363 (2004).
[CrossRef]

OSA TOPS

M.C. Nostrand, R.H. Page, S.A. Payne, W.F. Krupke, P. G. Schunemann, and L.I. Isaenko, �??Spectroscopic data for infrared transitions in CaGa2S4:Dy3+ and KPb2Cl5: Dy3+,�?? OSA TOPS 19, 524-528 (1998).

M.C. Nostrand, R.H. Page, S.A. Payne, W.F. Krupke, P. G. Schunemann, and L.I. Isaenko, �??Room temperature CaGa2S4:Dy3+ laser action at 2.43 and 4.31 μm and KPb2Cl5: Dy3+ laser action at 2.43 μm,�?? OSA TOPS 26, 441-449 (1999).

Philips Res. Repts.

G. Blasse and A. Bril, �??On the Eu3+ fluorescence in mixed metal oxides. II The 5D0 �?? 7F0 emission,�?? Philips Res. Repts. 21, 368-378 (1966).

Phys. Chem. Chem. Phys.

P. Porcher, M. Couto dos Santos, and O. Malta, �??Relationship between phenomenological crystal field parameters and the crystal structure: The simple overlap model,�?? Phys. Chem. Chem. Phys. 1, 397-405 (1999).
[CrossRef]

Phys. Rev. B

R. Balda, J. Fernández, J.L. Adam, and M.A. Arriandiaga, �??Time-resolved fluorescence-line narrowing and energy transfer studies in a Eu3+-doped fluorophosphate glass,�?? Phys. Rev. B 54, 12076-12086 (1996).
[CrossRef]

R. Balda, J. Fernández, A. Mendioroz, M. Voda, and M. Al-Saleh, �??Infrared-to-visible upconversion processes in Pr3+/Yb3+-codoped KPb2Cl5,�?? Phys. Rev. B 68, 1651011-1651017 (2003).
[CrossRef]

R. Balda, A. J. Garcia-Adeva, M. Voda, and J. Fernández, "Upconversion processes in Er3+-doped KPb2Cl5,�?? Phys. Rev. B 69, 2052031-2052038 (2004).
[CrossRef]

Prog. Crystal Growth and Charact.

K. Nitsch, M. Dusek, M. Nikl, K. Polák, and M. Rodová, �??Ternary alkali lead chlorides: crystal growth, cristal structure, absorption and emission properties,�?? Prog. Crystal Growth and Charact. 30, 1-22 (1995).
[CrossRef]

Radiation Measurements

S.V. Myagkota, A.S. Voloshinovskii, I.V. Stefanskii, M.S. Mikhalik, I.P. Pashuk, �??Reflection and emission properties of lead-based perovskite-like crystals,�?? Radiation Measurements 29, 273-277 (1998).
[CrossRef]

Sol. State Commun.

W.C. Nieuwpoort and G. Blasse, �??Linear Crystal-Field Terms and 5D0�??7F0 transition of Eu3+ ion,�?? Sol. State Commun. 4, 227-232 (1966).
[CrossRef]

Spectroscopic Properties of Rare Earths

B.G. Wybourne, Spectroscopic Properties of Rare Earths, Wiley, New York, 1965.

Other

P. Porcher, Fortran routine GROMINET for simulation of real and complex crystal-field parameters on 4f6 and 4f8 configurations, (unpublished 1995).

Cotton and Wilkinson, Advanced Inorganic Chemistry (Wiley 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

5D0→F0, 1, 2 emissions of Eu3+ in KPb2Cl5

Fig. 2.
Fig. 2.

5D0→F0→6 emissions of Eu3+ in KPb2Cl5

Fig. 3.
Fig. 3.

Observed (o) and calculated (c) energy levels for the three Eu3+ sites

Fig. 4.
Fig. 4.

Coordination polyhedra of Pb and K in KPb2Cl5. Their site symmetries are Pb(1)=C2/Cs, K=D3/C3v, and Pb(2)~C2v. Grey, red, yellow, and blue balls represent Pb(1), K, Pb(2), and Cl atoms, respectively. Crystal data were derived from Ref. 14.

Tables (3)

Tables Icon

Table 1. Observed and calculated energy levels (cm-1) of observed Eu3+ optical centers in KPb2Cl5

Tables Icon

Table 2. Phenomenological crystal-field parameters (cm-1) for observed Eu3+ optical centers in KPb2Cl5

Tables Icon

Table 3. Summary of spectroscopic results and crystal field calculation and simulation

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

H CF = k=2 4,6 q=0 k [ B q k ( C q k + (1) q C q k )+i S q k ( C q k (1) q C q k )]

Metrics