Abstract

Site-selective time-resolved spectroscopy of Eu3+ in KPb2Cl5 has been investigated by using fluorescence line narrowing technique. A crystal field analysis and simulation of the experimental results has been performed in order to parametrize the crystal field at the Eu3+ sites. Three symmetry independent crystal field sites for the rare-earth ion in this crystal were found. A plausible argument about the crystallographic nature of these sites is given.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G.L. Vossler, C.L. Brooks, and K.A. Winik, �??Planar Er:Yb glass ion exchanged waveguide laser,�?? Electron. Lett. 31, 1162-1163 (1995).
    [CrossRef]
  2. T.H. Whitley, C.A. Millar, R. Wyatt, M.C. Brierley, and D. Szebesta, �??Upconversion pumped green lasing in erbium doped fluorozirconate fibre,�?? Electron. Lett. 27, 1785-1786 (1991).
    [CrossRef]
  3. J.E. Roman, P. Camy, M. Hempstead, W.S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, J. S. Wilkinson, �??Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,�?? Electron. Lett. 31, 1345-1346 (1995).
    [CrossRef]
  4. A. Pollack and D.B. Chang, �??Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals,�?? J. Appl. Phys. 64, 2885-2893 (1988).
    [CrossRef]
  5. M.C. Nostrand, R.H. Page, S.A. Payne, W.F. Krupke, P. G. Schunemann, and L.I. Isaenko, �??Spectroscopic data for infrared transitions in CaGa2S4:Dy3+ and KPb2Cl5: Dy3+,�?? OSA TOPS 19, 524-528 (1998).
  6. M.C. Nostrand, R.H. Page, S.A. Payne, W.F. Krupke, P. G. Schunemann, and L.I. Isaenko, �??Room temperature CaGa2S4:Dy3+ laser action at 2.43 and 4.31 μm and KPb2Cl5: Dy3+ laser action at 2.43 μm,�?? OSA TOPS 26, 441-449 (1999).
  7. M.C. Nostrand, R.H. Page, S.A. Payne, L.I. Isaenko, and A.P. Yelisseyev, �??Optical properties of Dy3+-and Nd3+-doped KPb2Cl5,�?? J. Opt. Soc. Am. B 18, 264-276 (2001).
    [CrossRef]
  8. R. Balda, M. Voda, M. Al-Saleh, and J. Fernández, �??Visible luminescence in KPb2Cl5:Pr3+ crystal,�?? J. Lumin. 97, 190-97 (2002).
    [CrossRef]
  9. A. Mendioroz, J. Fernández, M. Voda, M. Al-Saleh, R. Balda, and A. J. Garcia-Adeva, �??Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal,�?? Opt. Lett. 27, 1525-1527 (2002).
    [CrossRef]
  10. N.W. Jenkins, S.R. Bowman, S.O´Connor, S.K. Searles, J. Ganem, �??Spectroscopic characterization of Er-doped KPb2Cl5 laser crystal,�?? Opt. Mat. 22, 311-320 (2003).
    [CrossRef]
  11. R. Balda, J. Fernández, A. Mendioroz, M. Voda, and M. Al-Saleh, �??Infrared-to-visible upconversion processes in Pr3+/Yb3+-codoped KPb2Cl5,�?? Phys. Rev. B 68, 1651011-1651017 (2003).
    [CrossRef]
  12. R. Balda, A. J. Garcia-Adeva, M. Voda, and J. Fernández, "Upconversion processes in Er3+-doped KPb2Cl5,�?? Phys. Rev. B 69, 2052031-2052038 (2004).
    [CrossRef]
  13. M. Voda, M. Al-Saleh, R. Balda, J. Fernández, G. Lobera �??Crystal Growth of Rare-earth-doped Ternary Potassium Lead Chloride Single Crystals by the Bridgman Method,�?? Opt. Mat. 26, 359-363 (2004).
    [CrossRef]
  14. K. Nitsch, M. Dusek, M. Nikl, K. Polák, and M. Rodová, �??Ternary alkali lead chlorides: crystal growth, cristal structure, absorption and emission properties,�?? Prog. Crystal Growth and Charact. 30, 1-22 (1995).
    [CrossRef]
  15. R. Balda, J. Fernández, J.L. Adam, and M.A. Arriandiaga, �??Time-resolved fluorescence-line narrowing and energy transfer studies in a Eu3+-doped fluorophosphate glass,�?? Phys. Rev. B 54, 12076-12086 (1996).
    [CrossRef]
  16. G. Blasse, A. Bril, and W.C. Nieuwpoort, �??On the Eu3+ fluorescence in mixed metal oxides. Part I- The crystal structure sensitivity of the intensity ratio of electric and magnetic dipole emission,�?? J. Phys. Chem. Solids 27, 1587-1592 (1966).
    [CrossRef]
  17. G. Blasse and A. Bril, �??On the Eu3+ fluorescence in mixed metal oxides. II The 5D0 �?? 7F0 emission,�?? Philips Res. Repts. 21, 368-378 (1966).
  18. W.C. Nieuwpoort and G. Blasse, �??Linear Crystal-Field Terms and 5D0�??7F0 transition of Eu3+ ion,�?? Sol. State Commun. 4, 227-232 (1966).
    [CrossRef]
  19. C. Görller-Walrand and K. Binnemans, �??Rationalization of Crystal-Field Parametrization�??, in Handbook on the Physics and Chemistry of Rare Earths, K.A. Gschneidner Jr. and L. Eyring, eds. (Elsevier Science, Amsterdam, 1996), vol.23 pp. 121-283.
    [CrossRef]
  20. B.G. Wybourne, Spectroscopic Properties of Rare Earths, Wiley, New York, 1965.
  21. P. Porcher, Fortran routine GROMINET for simulation of real and complex crystal-field parameters on 4f6 and 4f8 configurations, (unpublished 1995).
  22. S.V. Myagkota, A.S. Voloshinovskii, I.V. Stefanskii, M.S. Mikhalik, I.P. Pashuk, �??Reflection and emission properties of lead-based perovskite-like crystals,�?? Radiation Measurements 29, 273-277 (1998).
    [CrossRef]
  23. L. Isaenko, A. Yelisseyev, A. Tkachuk, S. Ivanova, S. Vatnik, A. Merkulov, S. Payne, R. Page, M. Nostrand, �??New laser crystal based on KPb2Cl5 for IR region,�?? Mater. Science and Engineering B81 188-190 (2001).
    [CrossRef]
  24. Cotton and Wilkinson, Advanced Inorganic Chemistry (Wiley 1980).
  25. P. Porcher, M. Couto dos Santos, and O. Malta, �??Relationship between phenomenological crystal field parameters and the crystal structure: The simple overlap model,�?? Phys. Chem. Chem. Phys. 1, 397-405 (1999).
    [CrossRef]

Electron. Lett. (3)

G.L. Vossler, C.L. Brooks, and K.A. Winik, �??Planar Er:Yb glass ion exchanged waveguide laser,�?? Electron. Lett. 31, 1162-1163 (1995).
[CrossRef]

T.H. Whitley, C.A. Millar, R. Wyatt, M.C. Brierley, and D. Szebesta, �??Upconversion pumped green lasing in erbium doped fluorozirconate fibre,�?? Electron. Lett. 27, 1785-1786 (1991).
[CrossRef]

J.E. Roman, P. Camy, M. Hempstead, W.S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, J. S. Wilkinson, �??Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,�?? Electron. Lett. 31, 1345-1346 (1995).
[CrossRef]

Handbook on the Physics and Chemistry of (1)

C. Görller-Walrand and K. Binnemans, �??Rationalization of Crystal-Field Parametrization�??, in Handbook on the Physics and Chemistry of Rare Earths, K.A. Gschneidner Jr. and L. Eyring, eds. (Elsevier Science, Amsterdam, 1996), vol.23 pp. 121-283.
[CrossRef]

J. Appl. Phys. (1)

A. Pollack and D.B. Chang, �??Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals,�?? J. Appl. Phys. 64, 2885-2893 (1988).
[CrossRef]

J. Lumin. (1)

R. Balda, M. Voda, M. Al-Saleh, and J. Fernández, �??Visible luminescence in KPb2Cl5:Pr3+ crystal,�?? J. Lumin. 97, 190-97 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Solids (1)

G. Blasse, A. Bril, and W.C. Nieuwpoort, �??On the Eu3+ fluorescence in mixed metal oxides. Part I- The crystal structure sensitivity of the intensity ratio of electric and magnetic dipole emission,�?? J. Phys. Chem. Solids 27, 1587-1592 (1966).
[CrossRef]

Mater. Science and Engineering (1)

L. Isaenko, A. Yelisseyev, A. Tkachuk, S. Ivanova, S. Vatnik, A. Merkulov, S. Payne, R. Page, M. Nostrand, �??New laser crystal based on KPb2Cl5 for IR region,�?? Mater. Science and Engineering B81 188-190 (2001).
[CrossRef]

Opt. Lett. (1)

Opt. Mat. (2)

N.W. Jenkins, S.R. Bowman, S.O´Connor, S.K. Searles, J. Ganem, �??Spectroscopic characterization of Er-doped KPb2Cl5 laser crystal,�?? Opt. Mat. 22, 311-320 (2003).
[CrossRef]

M. Voda, M. Al-Saleh, R. Balda, J. Fernández, G. Lobera �??Crystal Growth of Rare-earth-doped Ternary Potassium Lead Chloride Single Crystals by the Bridgman Method,�?? Opt. Mat. 26, 359-363 (2004).
[CrossRef]

OSA TOPS (2)

M.C. Nostrand, R.H. Page, S.A. Payne, W.F. Krupke, P. G. Schunemann, and L.I. Isaenko, �??Spectroscopic data for infrared transitions in CaGa2S4:Dy3+ and KPb2Cl5: Dy3+,�?? OSA TOPS 19, 524-528 (1998).

M.C. Nostrand, R.H. Page, S.A. Payne, W.F. Krupke, P. G. Schunemann, and L.I. Isaenko, �??Room temperature CaGa2S4:Dy3+ laser action at 2.43 and 4.31 μm and KPb2Cl5: Dy3+ laser action at 2.43 μm,�?? OSA TOPS 26, 441-449 (1999).

Philips Res. Repts. (1)

G. Blasse and A. Bril, �??On the Eu3+ fluorescence in mixed metal oxides. II The 5D0 �?? 7F0 emission,�?? Philips Res. Repts. 21, 368-378 (1966).

Phys. Chem. Chem. Phys. (1)

P. Porcher, M. Couto dos Santos, and O. Malta, �??Relationship between phenomenological crystal field parameters and the crystal structure: The simple overlap model,�?? Phys. Chem. Chem. Phys. 1, 397-405 (1999).
[CrossRef]

Phys. Rev. B (3)

R. Balda, J. Fernández, J.L. Adam, and M.A. Arriandiaga, �??Time-resolved fluorescence-line narrowing and energy transfer studies in a Eu3+-doped fluorophosphate glass,�?? Phys. Rev. B 54, 12076-12086 (1996).
[CrossRef]

R. Balda, J. Fernández, A. Mendioroz, M. Voda, and M. Al-Saleh, �??Infrared-to-visible upconversion processes in Pr3+/Yb3+-codoped KPb2Cl5,�?? Phys. Rev. B 68, 1651011-1651017 (2003).
[CrossRef]

R. Balda, A. J. Garcia-Adeva, M. Voda, and J. Fernández, "Upconversion processes in Er3+-doped KPb2Cl5,�?? Phys. Rev. B 69, 2052031-2052038 (2004).
[CrossRef]

Prog. Crystal Growth and Charact. (1)

K. Nitsch, M. Dusek, M. Nikl, K. Polák, and M. Rodová, �??Ternary alkali lead chlorides: crystal growth, cristal structure, absorption and emission properties,�?? Prog. Crystal Growth and Charact. 30, 1-22 (1995).
[CrossRef]

Radiation Measurements (1)

S.V. Myagkota, A.S. Voloshinovskii, I.V. Stefanskii, M.S. Mikhalik, I.P. Pashuk, �??Reflection and emission properties of lead-based perovskite-like crystals,�?? Radiation Measurements 29, 273-277 (1998).
[CrossRef]

Sol. State Commun. (1)

W.C. Nieuwpoort and G. Blasse, �??Linear Crystal-Field Terms and 5D0�??7F0 transition of Eu3+ ion,�?? Sol. State Commun. 4, 227-232 (1966).
[CrossRef]

Spectroscopic Properties of Rare Earths (1)

B.G. Wybourne, Spectroscopic Properties of Rare Earths, Wiley, New York, 1965.

Other (2)

P. Porcher, Fortran routine GROMINET for simulation of real and complex crystal-field parameters on 4f6 and 4f8 configurations, (unpublished 1995).

Cotton and Wilkinson, Advanced Inorganic Chemistry (Wiley 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

5D0→F0, 1, 2 emissions of Eu3+ in KPb2Cl5

Fig. 2.
Fig. 2.

5D0→F0→6 emissions of Eu3+ in KPb2Cl5

Fig. 3.
Fig. 3.

Observed (o) and calculated (c) energy levels for the three Eu3+ sites

Fig. 4.
Fig. 4.

Coordination polyhedra of Pb and K in KPb2Cl5. Their site symmetries are Pb(1)=C2/Cs, K=D3/C3v, and Pb(2)~C2v. Grey, red, yellow, and blue balls represent Pb(1), K, Pb(2), and Cl atoms, respectively. Crystal data were derived from Ref. 14.

Tables (3)

Tables Icon

Table 1. Observed and calculated energy levels (cm-1) of observed Eu3+ optical centers in KPb2Cl5

Tables Icon

Table 2. Phenomenological crystal-field parameters (cm-1) for observed Eu3+ optical centers in KPb2Cl5

Tables Icon

Table 3. Summary of spectroscopic results and crystal field calculation and simulation

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

H CF = k=2 4,6 q=0 k [ B q k ( C q k + (1) q C q k )+i S q k ( C q k (1) q C q k )]

Metrics