Abstract

Based on evanescent-wave guiding properties of nanowire waveguides, we propose to use single-mode subwavelength-diameter silica nanowires for optical sensing. Phase shift of the guided mode caused by index change is obtained by solving Maxwell’s equation, and is used as a criterion for sensitivity estimation. Nanowire sensor employing a wire-assembled Mach-Zehnder structure is modeled. The result shows that optical nanowires, especially those fabricated by taper drawing of optical fibers, are promising for developing miniaturized optical sensors with high sensitivity.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Z. M. Hale and F.P. Payne, Demonstration of an optimised evanescent field optical fibre sensor,�?? Anal. Chim. Acta 293, 49-54 (1994).
    [CrossRef]
  2. A. P. Abel, M. G. Weller, G. L. Duveneck, M. Ehrat, and H. M. Widmer, �??Fiber-optic evanescent wave biosensor for the detection of oligonucleotides,�?? Anal. Chem. 68, 2905-2912 (1996).
    [CrossRef] [PubMed]
  3. M. D. Marazuela and M. C. Moreno-Bondi, �??Fiber-optic biosensors - an overview,�?? Anal. Bioanal. Chem. 372, 664-682 (2002).
    [CrossRef] [PubMed]
  4. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, �??Zero-mode waveguides for single-molecule analysis at high concentrations,�?? Science 299, 682-686 (2003).
    [CrossRef] [PubMed]
  5. J. Bures and R. Ghosh, �??Power density of the evanescent field in the vicinity of a tapered fiber,�?? J. Opt. Soc. Am. A 16, 1992-1996 (1999).
    [CrossRef]
  6. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, �??Subwavelength-diameter silica wires for low-loss optical wave guiding,�?? Nature 426, 816-819 (2003).
    [CrossRef] [PubMed]
  7. G. Brambilla, V. Finazzi, and D. J. Richardson, �??Ultra-low-loss optical fiber nanotapers,�?? Opt. Express 12, 2258-2263 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2258">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2258</a>.
    [CrossRef] [PubMed]
  8. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth and P. St. J. Russell, and M. W. Mason,�??Supercontinuum generation in submicron fibre waveguides,�?? Opt. Express 12, 2864-2869 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864</a>.
    [CrossRef] [PubMed]
  9. L. M. Tong, J. Y. Lou, and E. Mazur, �??Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,�?? Opt. Express 12, 1025-1035 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025</a>.
    [CrossRef] [PubMed]
  10. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).
  11. P. Klocek, Handbook of Infrared Optical Materials (Marcel Dekker, New York, 1991).
  12. P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, �??Refractive index of water and steam as function of wavelength, temperature and density,�?? J. Phys. Chem. Ref. Data 19, 677-717 (1990).
    [CrossRef]
  13. E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists (John Wiley & Sons, New York, 1991).
  14. F. Bilodeau, K. O. Hill, D. C. Johnson, and S. Faucher, �??Compact, low-loss, fused biconical taper couplers: overcoupled operation and antisymmetric supermode cutoff,�?? Opt. Lett. 12, 634-636 (1987).
    [CrossRef] [PubMed]
  15. L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, �??Assembly of silica nanowires on silica aerogels for microphotonic devices,�?? Nano Lett. 5, 259-262 (2005)
    [CrossRef] [PubMed]
  16. A. A. Boiarski, R. W. Ridgway, J. R. Busch, G. Turhan-Sayan, and L. S. Miller, �??Integrated optic biosensor for environmental monitoring,�?? in Chemical, Biochemical, and Environmental Fiber Sensors �?�V, R. A. Lieberman ed., Proc. SPIE 1587, 114-128 (1992).
  17. F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, �??An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,�?? Nanotechnology 14, 907-912 (2003).
    [CrossRef]
  18. S. Busse, J. Kashammer, S. Kramer, and S. Mittler, �??Gold and thiol surface functionalized integrated optical Mach-Zehnder interferometer for sensing purposes,�?? Sensors Actuat. B 60, 148-154 (1999).
    [CrossRef]
  19. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  20. U. Schroter and A. Dereux, �??Surface plasmon polaritons on metal cylinders with dielectric core,�?? Phys. Rev. B 64, 125420 (2001).
    [CrossRef]
  21. B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, and N. Fabricius, �??Integrated optical Mach-Zehnder biosensor,�?? J. Lightwave Technol. 16, 583-592 (1998).
    [CrossRef]
  22. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, �??Nanoribbon waveguides for subwavelength photonics integration,�?? Science 305, 1269-1273 (2004)
    [CrossRef] [PubMed]
  23. C. J. Barrelet, A. B. Greytak, and C. M. Lieber, �??Nanowire photonic circuit elements,�?? Nano Lett. 4, 1981- 1985 (2004).
    [CrossRef]

Anal. Bioanal. Chem. (1)

M. D. Marazuela and M. C. Moreno-Bondi, �??Fiber-optic biosensors - an overview,�?? Anal. Bioanal. Chem. 372, 664-682 (2002).
[CrossRef] [PubMed]

Anal. Chem. (1)

A. P. Abel, M. G. Weller, G. L. Duveneck, M. Ehrat, and H. M. Widmer, �??Fiber-optic evanescent wave biosensor for the detection of oligonucleotides,�?? Anal. Chem. 68, 2905-2912 (1996).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

Z. M. Hale and F.P. Payne, Demonstration of an optimised evanescent field optical fibre sensor,�?? Anal. Chim. Acta 293, 49-54 (1994).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Phys. Chem. Ref. Data (1)

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, �??Refractive index of water and steam as function of wavelength, temperature and density,�?? J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

Nano Lett. (2)

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, �??Assembly of silica nanowires on silica aerogels for microphotonic devices,�?? Nano Lett. 5, 259-262 (2005)
[CrossRef] [PubMed]

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, �??Nanowire photonic circuit elements,�?? Nano Lett. 4, 1981- 1985 (2004).
[CrossRef]

Nanotechnology (1)

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, �??An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,�?? Nanotechnology 14, 907-912 (2003).
[CrossRef]

Nature (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, �??Subwavelength-diameter silica wires for low-loss optical wave guiding,�?? Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth and P. St. J. Russell, and M. W. Mason,�??Supercontinuum generation in submicron fibre waveguides,�?? Opt. Express 12, 2864-2869 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2864</a>.
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, and E. Mazur, �??Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,�?? Opt. Express 12, 1025-1035 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1025</a>.
[CrossRef] [PubMed]

G. Brambilla, V. Finazzi, and D. J. Richardson, �??Ultra-low-loss optical fiber nanotapers,�?? Opt. Express 12, 2258-2263 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2258">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2258</a>.
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (1)

U. Schroter and A. Dereux, �??Surface plasmon polaritons on metal cylinders with dielectric core,�?? Phys. Rev. B 64, 125420 (2001).
[CrossRef]

Proc. SPIE (1)

A. A. Boiarski, R. W. Ridgway, J. R. Busch, G. Turhan-Sayan, and L. S. Miller, �??Integrated optic biosensor for environmental monitoring,�?? in Chemical, Biochemical, and Environmental Fiber Sensors �?�V, R. A. Lieberman ed., Proc. SPIE 1587, 114-128 (1992).

Science (2)

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, �??Nanoribbon waveguides for subwavelength photonics integration,�?? Science 305, 1269-1273 (2004)
[CrossRef] [PubMed]

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, �??Zero-mode waveguides for single-molecule analysis at high concentrations,�?? Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Sensors Actuat. B (1)

S. Busse, J. Kashammer, S. Kramer, and S. Mittler, �??Gold and thiol surface functionalized integrated optical Mach-Zehnder interferometer for sensing purposes,�?? Sensors Actuat. B 60, 148-154 (1999).
[CrossRef]

Other (4)

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists (John Wiley & Sons, New York, 1991).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).

P. Klocek, Handbook of Infrared Optical Materials (Marcel Dekker, New York, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

z-components of the Poynting vectors (Sz ) of the HE11 mode of a (a) 200- and (b) 400-nm diameter silica wires at 325-nm wavelength

Fig. 2.
Fig. 2.

Fractional power of the fundamental mode outside the core of silica nanowires at 325-and 650-nm wavelength. Dashed lines: single-mode cutoff diameters.

Fig. 3.
Fig. 3.

Schematic diagram of (a) a silica nanowire sensing element and (b) a proposed sensor with a Mach-Zehnder interferometer.

Fig. 4.
Fig. 4.

Changes in propagation constant (Δβ) as a function of molar concentration (C) of the specimen.

Fig. 5.
Fig. 5.

Schematic diagram of (a) a silica nanowire for selective sensing and (b) a cross section view of the composite waveguide.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

V = π ( n 1 2 n 2 2 ) 1 2 D λ 0 < 2.405
{ J 1 ' ( U ) U J 1 ( U ) + K 1 ' ( W ) W K 1 ( W ) } { J 1 ' ( U ) U J 1 ( U ) + n 2 2 K 1 ' ( W ) n 1 2 W K 1 ( W ) } = ( v β k n 1 ) 2 ( V U W ) 4
Δ Φ = ( β β 0 ) · L = Δ β · L
n C = n C 0 · ( 1 C ) + n s · C
S N = 1 L . d ( Δ Φ ) d n C .

Metrics