Abstract

We studied a two-dimensional square-lattice photonic crystal with all-angle negative refraction at its first band. Using this photonic crystal, we designed and fabricated a flat lens functioning as a cylindrical lens by increasing the vertical dimension of the photonic crystal. Two-dimensional finite-difference time-domain simulation validated negative refraction imaging. To perform the experiment, a microwave imaging system was built based on a vector network analyzer. Field distributions were acquired by scanning the imaging plane and object plane. The experiment demonstrated negative refraction imaging in both amplitude and phase, and obtained an image with feature size, 0.77λ0.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. V.G. Veselago, �??The electrodynamics of substances with simultaneously negative values of permittivity and permeability.�?? Sov. Phys. Usp. 10, 509-514(1968).
    [CrossRef]
  2. J.B. Pendry, A.J. Holden, W.J. Stewart and I. Youngs, �??Extremely low frequency plasmons in metallic mesostructures.�?? Phys. Rev. Lett. 76, 4773�??4776 (1996).
    [CrossRef] [PubMed]
  3. J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, �??Magnetism from conductors and enhanced nonlinear phenomena.�?? IEEE Trans. Microw. Theory Techniques. 47, 2075�??2084 (1999).
    [CrossRef]
  4. R.A. Shelby, D.R. Smith, and S. Schultz, �??Experimental verification of a negative index of refraction.�?? Science, 292, 77-79 (2001).
    [CrossRef] [PubMed]
  5. M. Notomi, �??Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap.�?? Phys. Rev. B. 62, 10696-10705 (2000).
    [CrossRef]
  6. P.V. Parimi, W.T. Lu, P. Vodo, J. Sokoloff, J.S. Derov, and S. Sridhar, �??Negative refraction and left-handed electromagnetism in microwave photonic crystals.�?? Phys. Rev. Lett. 92, 127401(4) (2004).
    [CrossRef]
  7. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C.M. Soukoulis, �??Electromagnetic wave: negative refraction by photonic crystals.�?? Nature, 423, 604-605 (2003).
    [CrossRef] [PubMed]
  8. J.B., Pendry, �??Negative refraction makes a perfect lens.�?? Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  9. N. Garcia, and M. Nieto-Vesperinas, �??Left-handed materials do not make a perfect lens.�?? Phys. Rev. Lett. 88, 207403(4) (2002).
  10. P.M. Valanju, R. M. Walser, and A. P. Valanju, �??Wave refraction in negative-index media: always positive and very inhomogeneous.�?? Phys. Rev. Lett. 88, 187401(4) (2002).
    [CrossRef]
  11. N. Garcia, and M. Nieto-Vesperinas, �??Is there an experimental verification of a negative index of refraction yet?�?? Opt. Lett., 27, 885-887(2002).
    [CrossRef]
  12. J. B. Pendry, �??Positively negative.�?? Nature, 423, 22(2003).
    [CrossRef] [PubMed]
  13. C. Luo, S.G. Johnson, J.D. Joannopoulos, and J.B. Pendry, �??All-angle negative refraction without negative effective index.�?? Phys. Rev. B, 65, 201104(R) (2002).
    [CrossRef]
  14. P.V. Parimi, W.T. Lu, P. Vodo, and S. Sridhar, �??Photonic crystals: imaging by flat lens using negative refraction.�?? Nature, 426, 404 (2003).
    [CrossRef] [PubMed]
  15. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakamib, �??Self-collimating phenomena in photonic crystals�??, Appl. Phys. Lett. 74, 1212-1214 (1999).
    [CrossRef]
  16. C. Luo, S.G. Johson, J.D. Joannopoulos, and J.B. Pendry, �??All-angle negative refraction in a three-dimensionally periodic photonic crystal.�?? Appl. Phys. Lett. 81, 2352-2354 (2002).
    [CrossRef]
  17. X. Ao and S. He, �??Three-dimensional photonic crystal of negative refraction achieved by interference lithography.�?? Opt. Lett., 29, 2542-2544(2004).
    [CrossRef] [PubMed]

Appl. Phys. Lett. (2)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakamib, �??Self-collimating phenomena in photonic crystals�??, Appl. Phys. Lett. 74, 1212-1214 (1999).
[CrossRef]

C. Luo, S.G. Johson, J.D. Joannopoulos, and J.B. Pendry, �??All-angle negative refraction in a three-dimensionally periodic photonic crystal.�?? Appl. Phys. Lett. 81, 2352-2354 (2002).
[CrossRef]

IEEE Trans. Microw. Theory Techniques (1)

J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, �??Magnetism from conductors and enhanced nonlinear phenomena.�?? IEEE Trans. Microw. Theory Techniques. 47, 2075�??2084 (1999).
[CrossRef]

Nature (3)

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C.M. Soukoulis, �??Electromagnetic wave: negative refraction by photonic crystals.�?? Nature, 423, 604-605 (2003).
[CrossRef] [PubMed]

P.V. Parimi, W.T. Lu, P. Vodo, and S. Sridhar, �??Photonic crystals: imaging by flat lens using negative refraction.�?? Nature, 426, 404 (2003).
[CrossRef] [PubMed]

J. B. Pendry, �??Positively negative.�?? Nature, 423, 22(2003).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (2)

C. Luo, S.G. Johnson, J.D. Joannopoulos, and J.B. Pendry, �??All-angle negative refraction without negative effective index.�?? Phys. Rev. B, 65, 201104(R) (2002).
[CrossRef]

M. Notomi, �??Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap.�?? Phys. Rev. B. 62, 10696-10705 (2000).
[CrossRef]

Phys. Rev. Lett. (5)

P.V. Parimi, W.T. Lu, P. Vodo, J. Sokoloff, J.S. Derov, and S. Sridhar, �??Negative refraction and left-handed electromagnetism in microwave photonic crystals.�?? Phys. Rev. Lett. 92, 127401(4) (2004).
[CrossRef]

J.B., Pendry, �??Negative refraction makes a perfect lens.�?? Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

N. Garcia, and M. Nieto-Vesperinas, �??Left-handed materials do not make a perfect lens.�?? Phys. Rev. Lett. 88, 207403(4) (2002).

P.M. Valanju, R. M. Walser, and A. P. Valanju, �??Wave refraction in negative-index media: always positive and very inhomogeneous.�?? Phys. Rev. Lett. 88, 187401(4) (2002).
[CrossRef]

J.B. Pendry, A.J. Holden, W.J. Stewart and I. Youngs, �??Extremely low frequency plasmons in metallic mesostructures.�?? Phys. Rev. Lett. 76, 4773�??4776 (1996).
[CrossRef] [PubMed]

Science (1)

R.A. Shelby, D.R. Smith, and S. Schultz, �??Experimental verification of a negative index of refraction.�?? Science, 292, 77-79 (2001).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V.G. Veselago, �??The electrodynamics of substances with simultaneously negative values of permittivity and permeability.�?? Sov. Phys. Usp. 10, 509-514(1968).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Picture of the fabricated flat lens. (b) Illustration of the experimental setup. The source is located at x=-1. (c) Picture of the experimental setup.

Fig. 2.
Fig. 2.

(a) TE mode dispersion diagram of the square-lattice PhC. (b)TE mode photonic band structure of the square-lattice PhC. (c)TE mode EFCs of the square-lattice PhC at the vicinity of the first bandgap.

Fig. 3.
Fig. 3.

(a) Illustration of propagation of the incident beam and refracted beam in k-space. (b) Illustration of propagation of the incident beam and refracted beam in real space.

Fig. 4.
Fig. 4.

(a) Simulated phase distribution (unit: radian) when a dipole is placed at object distance 1mm: TE mode at 24.6GHz. (b) Simulated amplitude distribution when a dipole is placed at object distance 1mm: TE mode at 24.6GHz.

Fig. 5.
Fig. 5.

(a) The measured phase distributions (in degrees) at 23.2GHz for the source (left) and the image (right). The flat lens (photonic crystal) is depicted between the source and the image. (b) The measured amplitude distributions at 23.2GHz. The flat lens (photonic crystal) is depicted between the source and the image.

Metrics